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Preface

Goal

Stable homotopy theory is the branch of mathematics that studies phenomena in homotopy

theory that arise after repeated application of the suspension operation. Classical examples of

such phenomena include the Freudenthal suspension theorem (homotopy groups of spheres sta-

bilize after applying the suspension functor sufficiently many times), the suspension isomorphism

(reduced cohomology of a space and of its suspension coincide), and Bott periodicity (K-theory is

periodic under the suspension operation).

In the same way that algebraic topologists do much of their work in the category of spaces, ho-

motopy theorists studying stable phenomena often work in the stable homotopy category. Roughly

speaking, this category is what we obtain when we take the homotopy category of topological

spaces, and force the suspension functor to be an equivalence of categories. We are left with only

those phenomena that survive repeated applications of the suspension functor, which should be

precisely the stable phenomena that the homotopy theorists are after.

The stable homotopy category is rather complicated, and in order to study it, it is helpful to

zoom in a bit further and restrict attention to more digestible pieces of this category. This approach

has been quite successful, and its success can be seen, for instance, in the chromatic approach

to stable homotopy theory. This approach asserts that structures in the stable homotopy category

should loosely correspond to structures in the category of sheaves over a particular space that we

call the stack of formal groups. This stack of formal groups admits a filtration, and the chromatic

point of view dictates that this ought to translate to a filtration of pieces of the stable homotopy

category, each piece more complicated than the previous one, but all of them simpler than the

entire thing.

For the most part, this thesis will confine itself to only one digestible piece: we will be interested

in the aspects of the stable homotopy category that can be detected by K-homology, or the K-local

stable homotopy category for short. Building on earlier work due to Adams, this K-local category

was first systematically studied several decades ago by Alridge Bousfield who, in 1979, published a

paper, [2], in which he gave an algebraic classification of the objects in the K-local stable homotopy
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category (or, of the K-local spectra for short, in the same way that objects of the stable homotopy

category are called spectra), at least when further localized at an odd prime.

The paper of Bousfield is almost entirely algebraic. The fact that we can reduce questions in

homotopy theory to algebra is essentially thanks to a tool called the Adams spectral sequence. In

the special case of the K-local category, this tool roughly tells us the following: given two spaces X

and Y , if one understands enough of the (purely algebraic!) structure of Hom
(
K∗(X ),K∗(Y )

)
,

where K∗ means K-homology, then one can deduce what the homotopy classes of maps from X

to Y should be in the K-local stable homotopy category.

Bousfield’s paper predates the chromatic approach that we mentioned earlier. Recall that this

approach studies a certain filtration of increasingly complicated pieces of the stable homotopy

category. As it turns out, the very first piece of this filtration is strongly related to the K-local

category that Bousfield was interested in, and when suitably defined, they are in fact the same

thing. This brings us to the goal of this thesis: with the modern, chromatic language at our

fingertips, we will shed a new light on the techniques used in the original paper, only to find

that, at least in hindsight, the complicated algebraic structures that were initially considered are

geometric in origin. In fact, they are but a minor reflection of the deep and mysterious geometric

structures governing stable phenomena — structures which, for the most part, remain to be

understood to this very day.

Outline and dependencies

In Appendix A we study formal group laws over commutative rings. We begin by introducing

the basic definitions, and proceed to study heights of formal group laws, ending with a mostly

independent section on endomorphisms of formal group laws. Most of the results are well-known,

though we occasionally use non-standard terminology when discussing heights.

Chapter 1 serves as an introduction to the basic language of stable homotopy theory that we

will need in the rest of this thesis. None of the results in this chapter are new, and the chapter

is mostly included for the sake of bookkeeping, not to mention because of the lack of a suitable

reference to which to refer.

In Chapter 2 we introduce Hopf algebroids and algebraic stacks. The purpose of this chapter

is two-fold. First, it seems that Hopf algebroids are less familiar than algebraic stacks to most

algebraic geometers, and vice versa for topologists, so that it is reasonable to give a combined

discussion on both notions. Second, we use this chapter to fix definitions that may otherwise be

ambiguous due to inconsistent conventions in the literature.

With the language of spectra and algebraic stacks at hand, we are ready to give a detailed

study of the geometric structure of the stack of formal groups in Chapter 3. We explain how
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heights of formal group laws give rise to a filtration of the stack into substacks, and proceed to

look into the geometry of each of the layers of this stack. We also discuss Landweber’s exact

functor theorem, allowing us to construct spectra in the stable homotopy category using maps

into the stack of formal groups. We use this theorem to give detailed constructions of various

spectra that carry the name ‘Morava E-theory’. It is my hope that the statements and proofs in

this chapter fill up some gaps in the mathematical literature.

Finally, in Chapter 4 we use the machinery developed in the previous chapter to study the

K-local stable homotopy category. We start out by outlining the key constructions and result in

Bousfield’s paper. After that, we investigate the category of sheaves over certain substacks of

the stack of formal groups; by that point we will know that this category is intimately related to

the K-local category that we are ultimately interested in. Finally, we use the conclusions of our

investigation to revisit Bousfield’s results, and indicate how our results may shed a conceptually

simplifying light on the original ideas.

In case the reader is interested only in some specific parts of this thesis, the following depen-

dency diagram may be of help.

A

1 4

2 3

A.4A.1

A.2 A.3

1.1

1.4

1.2
1.3

all

all

Conventions

Whenever we work with spaces, we assume that we are working inside some convenient

category of topological spaces, such as CW complexes or compactly generated weak Hausdorff

spaces. At no point will the precise choice of category of spaces be relevant. Likewise, whenever

we work with spectra, we will be working in the usual stable homotopy category. Apart from a few

constructions in Section 1.2, a particular choice of model for the stable homotopy category will

never be relevant. This means that the reader unfamiliar with stable homotopy theory can safely

assume the existence of the category as a black box without much loss of continuity.
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In order for our story to fit within the framework of classical algebraic geometry, all our

rings are assumed to be commutative and with unity. In practice, stable homotopy groups of

commutative ring spectra are anti-commutative graded rings rather than being truly commutative

rings. However, all spectra that we are interested in (most notably, KU, E(n) and MU) are evenly

graded, so that our conventions will not cause any problems.

The algebraic stacks that we define in Section 2.3 are rather general: they are fpqc stacks

fibred in groupoids over the category of (affine) schemes, without any assumptions on the diagonal,

or on the existence of an fpqc atlas. We have chosen this convention so that all algebro-geometric

objects that we encounter will fit within our framework. As a special case, we define Adams stacks

to be algebraic stacks with affine diagonal admitting an fpqc atlas, and Noetherian stacks to be

algebraic stack admitting an fppf atlas from an affine Noetherian scheme, both of which are at a

level of generality closer in spirit to the usual theory of algebraic stacks that one encounters in

algebraic geometry.

We will often be working with formal group laws, particularly in Appendix A. For us, a formal

group law will always mean a commutative, one-dimensional formal group law over a commutative

ring with unity. There are also various generalizations of formal group laws that essentially boil

down to things that are (Zariski- or fpqc-)locally a formal group law. We will never use these

concepts.

Finally, we remark that set-theoretical issues may or may not arise at some points, so just

to be certain, we invoke the usual disclaimer mentioning universes and how it ultimately doesn’t

matter.

Acknowledgements
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Chapter 1

Spectra

The primary goal of this chapter is to introduce some well-known ideas and methods from sta-

ble homotopy theory. We begin by defining the stable homotopy category, and more importantly,

by describing some of its properties. We then give some examples of objects in this category,

particularly those that will become relevant later in this thesis.

1.1 The stable homotopy category

The stable homotopy category, which we denote by Ho(Sp), may be thought of as the stabi-

lization of the classical homotopy category of topological spaces under the suspension operation.

It provides us with a crucial framework in which much of modern stable homotopy theory is being

developed. We start out in this section by stating many basic properties that Ho(Sp) satisfies. We

then proceed to give, without proofs, an explicit construction of this category, via the language of

CW spectra. Many other more sophisticated constructions of the category exist, but for us this

one construction will suffice — in fact, the fact that the category Ho(Sp) exists in the first place,

without having an explicit construction of it, will often suffice.

To the reader who is not familiar with the stable homotopy category, let me also kindly refer

you to [6] and [12], both of which have been of great help when I first learned about this, and on

which much of the contents of this section are based. Without further ado, let’s start by listing

the desired properties.

There exists a functor Σ∞ from the pointed homotopy category Ho(Top∗) of spaces to the stable

homotopy category Ho(Sp), meaning that spaces can be viewed as objects in Ho(Sp). This func-

tor Σ∞ is fully faithful, and admits a right adjoint, denoted Ω∞. Given a space X , the object Σ∞X

is called the suspension spectrum of X . More generally, objects in Ho(Sp) are called spectra.
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There exists an equivalence of categories Σ : Ho(Sp)→ Ho(Sp), called the suspension functor;

its inverse equivalence is denoted Ω and called the loop space functor. They commute with the

classical suspension and loop space functors on spaces in the sense that we have a commutative

diagram

Ho(Top∗) Ho(Top∗)

Ho(Sp) Ho(Sp)

Σ

Σ∞ Σ∞

Ω

Σ

Ω∞ Ω∞

Ω

The suspension and loop space functors should be regarded as the stable analogue of the classical

suspension and loop space functors, as both the names and the commutativity of the above

diagram already suggest. The fact that these functors are now equivalences may well be regarded

as the sole distinguishing feature of the stable homotopy category. One consequence of this feature

is that negative dimensions make sense. To illustrate this, if we define the sphere spectrum S to

be Σ∞S0, then for all n ≥ 0, ΣnS � Σ∞Sn, but for n < 0, ΣnS exist as well, and these essentially

behave as negative-dimensional spheres.

The stable homotopy category is additive. Let us expand on what means. First and foremost,

the Hom sets in Ho(Sp) carry abelian group structures. We often write [E, E′] for the set of maps

from the spectrum E to the spectrum E′, endowed with its group structure. Moreover, we often

extend the abelian group [E, E′] into a graded abelian group [E, E′]∗ containing [E, E′] as the 0-th

level by defining [E, E′]n = [ΣnE, E′]. Second, there exists a zero object, often denoted ∗, which

is in fact Σ∞ applied to the one-point topological space. Third, the stable homotopy category

admits finite coproducts and finite products, which coincide up to isomorphism; we denote the

(co-)product of two spectra X and Y by X∨Y , and refer to this product as the wedge sum. Actually,

Ho(Sp) has all infinite products and coproducts, too, but then they need no longer coincide.

The enrichment is not surprising when you think of the equivalence Σ as the stable analogue

of the classical suspension functor. Indeed, if we have two spaces X and Y , then the set of

homotopy classes of maps from Σ2X to Y carries a group structure, obtained by ‘concatenating’

(representatives of classes of) maps; this group structure is abelian by the usual shrink-and-move

argument. But in the stable homotopy category, every spectrum X is the two-fold suspension of

some other spectrum (namely of Ω2X ).

The stable homotopy category admits an internal Hom, and a smash product acting as its left

adjoint, together turning the category into a closed symmetric monoidal category. We denote the

smash product by ∧, and the internal Hom by F ( · , · ). The unit of the smash product is given by

the sphere spectrum Σ∞S0.

The symmetric monoidal structure on Ho(Sp) is compatible with the classical monoidal struc-

ture on Ho(Top∗), in the sense that Σ∞ is strong monoidal and Ω∞ is (at least) lax monoidal. The
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monoidal structure on Ho(Sp) is compatible with the suspension and loop space functors too. In

fact, we can define the suspension and loop space functors explicitly in terms of the symmetric

monoidal structure, by setting

ΣX = (Σ∞S1) ∧ X and ΩX = F (Σ∞S1, X ) .

From this perspective, it is easy to see that we have natural isomorphisms

ΣX ∧ Y � Σ(X ∧ Y ) � X ∧ ΣY and ΩF (X, Y ) � F (ΣX, Y ) � F (X,ΩY ) .

Another feature of the stable homotopy category, which is not shared by the homotopy category

of spaces, is that retracts are summands of the original space. More precisely, let X be a spectrum,

and let A be a spectrum such that there exist arrows A → X → A that compose to the identity. We

also say that A is a retract of X . Then X contains A as a summand, in other words, there exists

a spectrum B such that X � A ∨ B.

There is a notion of homotopy groups in Ho(Sp), or more precisely, of stable homotopy groups.

Given a spectrum E, we define the n-th stable homotopy group of E to be

πS
n(E) = [ΣnS, E] .

Notice that n may well be negative. We point out that the superscript S is often omitted from

notation. If E is the suspension spectrum Σ∞X of a based space X , then πS
n(Σ∞X ) is naturally

isomorphic to the usual stable homotopy group of X . Of course, in that case, the negative homo-

topy groups will be trivial. More generally, any spectrum whose negative stable homotopy groups

vanish is called a connective spectrum.

Recall that by Whitehead’s Theorem, weak homotopy equivalences between CW complexes in-

duce isomorphisms in the homotopy category. The stable homotopy category admits an analogous

result.

Theorem 1.1.1 (Stable Whitehead Theorem). If f : X → Y is a morphism in Ho(Sp) whose

induced maps on stable homotopy groups are isomorphisms of abelian groups, then f is an

isomorphism in Ho(Sp). �

Yet another key aspect of the stable homotopy category is that the objects of Ho(Sp) define

(reduced) homology and cohomology theories on the category of based spaces. (When we say

“reduced (co-)homology”, we mean functors admitting suspension isomorphisms, and satisfying

homotopy invariance, the exactness property, and the wedge axiom.) Here’s how that works. If E

is a spectrum in Ho(Sp), then for any based space X , we define the groups

Ẽn(X ) = πS
n
(
(Σ∞X ) ∧ E

)
� [S, (Σ∞X ) ∧ E]n

and

Ẽn(X ) = πS
−n

(
F (Σ∞X, E)

)
� [Σ∞X, E]−n
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for all n. These definitions satisfy the axioms of a generalized reduced homology and cohomology

theory. A morphism of spectra in Ho(Sp) can be seen to induce a natural transformation between

homology and cohomology functors.

A few remarks are in order. First, we may convert these reduced homology and cohomology

theories in their unreduced versions in the usual way, in which case we write En and En rather

than Ẽn and Ẽn. Second, we point out that the definition of reduced (co-)homology extends in an

obvious way to the case where X is not a space but a spectrum. Finally, if X is the zero object ∗

in Ho(Sp), then we have En(∗) = [S, E]n = πS
n(E), and En(∗) = πS

−n(E). We often write E∗ and E∗ to

refer to these abelian groups.

So we can turn spectra in both homology and cohomology theories. What’s more, this process

can be reversed. That is, given a (co-)homology theory, there will be a spectrum representing it.

The cohomological result is known as the Brown representability theorem, and one of its many

versions states the following.

Theorem 1.1.2 (Brown Representability Theorem). Let Ẽ∗ is a reduced cohomology theory

satisfying the wedge axiom defined on the homotopy category of connected CW complexes. Then

there exists a unique spectrum E such that Ẽn(X ) = [Σ∞X, E]−n. Moreover, a natural transforma-

tion of two such reduced cohomology theories gives rise to a morphism of spectra in Ho(Sp). �

The homological analogue is due to Adams, and it is the same except that we need to impose

an additional assumption on our homology functor, namely the direct limit axiom. While it may

rightfully be called the Adams representability theorem, the term “Brown representability theorem”

is also often used for the homological version.

Theorem 1.1.3 (Adams Representability Theorem). Let Ẽ∗ be a reduced homology theory

satisfying the wedge and direct limit axioms. Then there exists a unique spectrum E such that

Ẽn(X ) = [S, (Σ∞X ) ∧ E]n. Moreover, a natural transformation of two such reduced homology

theories gives rise to a morphism of spectra in Ho(Sp). �

It would appear, then, that spectra ‘are’ (co-)homology theories. But there’s one more subtlety

that is worth mentioning. Morphisms in the stable homotopy category do not correspond exactly

to natural transformations of (co-)homology functors. This is due to the existence of so-called

phantom maps in the stable homotopy category. A phantom map is a non-trivial morphism

E → E′ of spectra such that the induced natural transformation on homology theories is zero. We

won’t go into this much further, but it is important to keep in mind that they exist.

The stable homotopy category carries the structure of a triangulated category. More precisely,

let us call any string of maps of the form X → Y → Z → ΣX a triangle. Then there is a collection

of so-called distinguished triangles in Ho(Sp) that satisfy the axioms of a triangulated category.

In particular, every morphism X → Y is part of a distinguished triangle X → Y → Z → ΣX .

12



The Z occurring in this distinguished triangle is sometimes also denoted by Y/X , and called the

cofibre of the map X → Y , and it does indeed carry the intuitive interpretation of a quotient, as

is exemplified by the long cofibre and fibre sequences that arise from the distinguished triangles.

The smash product and the triangulation are compatible in the sense that smash products

preserve cofibres. More precisely, if X → Y is a map with cofibre Y/X , and we smash the map

with a spectrum E so as to obtain a map E ∧ X → E ∧ Y , then the cofibre (E ∧ Y )/(E ∧ X ) is given

by E ∧ (Y/X ). Another nice compatibility is the following. If A is a retract of X , then the natural

‘inclusion’ A → X is part of a distinguished triangle A → X → X/A → ΣA. Recall that retracts are

summands, so that X � A ∨ B for some B. It is reasonable, then, to expect that B � X/A, and

indeed this is the case.

The last property that we mention is an imprecise but nonetheless fascinating one. Some of

the properties stated above are very similar to those of the category of abelian groups. Both are

additive, both satisfy the property that retracts are summands, and both have a closed symmetric

monoidal structure. Based on this analogy, we make the following definition. In the same way

that a (not necessarily commutative but still unital) ring is nothing but a monoid object in the

monoidal category of abelian groups, we define a ring spectrum to be a monoid object in the

stable homotopy category. More precisely, a ring spectrum R is a spectrum together with two

morphisms, m : R ∧ R → R and e : S→ R, such that the diagrams

(R ∧ R) ∧ R

R ∧ R R ∧ (R ∧ R)

R R ∧ R

m∧Id

m Id∧m

m

and

R ∧ R

S ∧ R R ∧ S

R

m

e∧Id Id∧e

are commutative. A morphism of ring spectra is just a morphism of spectra such that all relevant

structures are compatible. It is obvious what it means for a ring spectrum to be commutative as

well. All ring spectra that we are interested in will be commutative.

Given a commutative ring spectrum E and a space X , the graded groups Ẽ∗(X ) = [Σ∞X, E]∗
inherit a multiplicative structure in the following way. Start with two elements of the cohomology

groups. Smash them together, compose them with the diagonal Σ∞X → Σ∞X ∧ Σ∞X and with

the multiplication E ∧ E → E, and we end up with a new element. This structure turns Ẽ∗(X )

into what unfunny people call a rng — a structure that is almost a (commutative) ring but lacks a

multiplicative identity element. The unreduced version E∗(X ) = Ẽ∗(X+) does have a unit, namely

the map X+ → S0 sending X to the point that is not the base-point of S0. With some more
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work, one can show that E∗ defines a multiplicative cohomology theory. Conversely, if we have

a multiplicative cohomology theory E∗, Brown representability (1.1.2) ensures that the structures

lift to a structure on the spectrum E which turns it into a multiplicative cohomology theory.

For completeness, we remark that there is another definition of ring spectra which is not

equivalent to the one presented above. The stable homotopy category is really the underlying

homotopy category of an ∞-category Sp. Rather than asking for a spectrum to be a commutative

monoid object in Ho(Sp), we can also ask for it to be a commutative monoid in Sp. Such spectra

are sometimes called E∞-ring spectra.

In the same way that modules over rings exist, we can define a left module spectrum over a

ring spectrum R to be a module object over R. More precisely, it is a spectrum M together with a

morphism ρ : R ∧M → M such that the diagrams

(R ∧ R) ∧M

R ∧M R ∧ (R ∧M)

M R ∧M

m∧Id

ρ Id∧ρ

ρ

and

S ∧M R ∧M

M

e∧Id

ρ

commute. There is obviously a notion of a right module spectrum as well, and if the ring

spectrum is commutative, these two notions coincide.

We now turn to the task of constructing the stable homotopy category. There are various

known approaches to this, all of them with their own advantages and disadvantages. Following [13,

Ch. 8], we’ll sketch one construction below, which is historically one of the first constructions and

has the advantage of being reasonably simple.

A CW spectrum consists of based CW complexes X0, X1, . . ., together with cellular inclusion

maps ΣXn ↪→ Xn+1 turning ΣXn into a subcomplex of Xn+1. With this definition, every (k + n)-cell

of En may be identified with a certain (k + n + 1)-cell of En+1, so that it makes sense to define

a stable k-cell to be a (k + n)-cell of En, modulo said identification. Notice in particular that k

can be negative, and recall that the stable homotopy category aims to make sense of negative

dimensions. In the literature, CW spectra are also called CW prespectra, sequential spectra, or

even just spectra. The terms have also been used for several very similar notions. For instance

one may drop the requirement that the structure maps are cellular inclusions, one might allow

the spaces to be arbitrary topological spaces, or one might also want to have negatively graded

spaces. Such changes usually do not make a difference, though this is not always easy to prove.
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The morphisms that we are interested in are not what you might expect. Our definition of a

morphism of CW spectra will be a bit sketchy to keep it short, but hopefully the idea is conveyed.

A morphism f : X → Y is defined as follows. For each stable m-cell on X , there should be an N

such that for all n ≥ N , we have an explicit continuous map from the (m + n)-cell on Xn realizing

the stable m-cell, to Yn. We want the continuous maps to be compatible with the structure maps

ΣXn → Xn+1, in the sense that if f defines a map on an (m + n)-cell of Xn, then the map on the

corresponding (m + n + 1)-cell of Xn+1 should be the suspension of the map of the (m + n)-cell. So

in short, we could say that maps of CW spectra are ‘eventually-defined maps’. We end up with

a category CW–Sp of CW spectra, where one should think for a moment to convince oneself that

compositions are well-defined.

There is a notion of homotopy of maps, defined as follows. Given two maps f, g : X → Y of CW

spectra, a homotopy should be a map of CW spectra from the CW spectrum (X ∧ I+)n = Xn∧ I+ to Y ,

in such a way that it restricts to the maps f and g at the end-points. That is, upon composing

with the two inclusions X → X ∧ I+, we get f and g back. One can verify that this is an equivalence

relation.

We now define a category Ho(CW–Sp) whose objects are CW spectra, and whose morphisms

are homotopy classes of maps. Here too one needs to spend some quality time with the definition

of compositions. This category is equivalent to the stable homotopy category, or if you wish, it

defines it. In particular, it satisfies all the desired properties we discussed before.

The reader should feel free to try and verify some of the properties. This immediately brings

us to the downside of this particular construction. While it is arguably the easiest conception of

the stable homotopy category, it is also very hard to work with. For instance, if the reader has

indeed tried to prove that compositions are well-defined, he will have found that properties such

as associativity are tedious to verify. The same is true for many of the other properties.

A slightly more sophisticated but equally important issue with this construction is the lack

of a decent smash product. The category Ho(CW–Sp) is closed symmetric monoidal (as was one

of our desired properties), but this structure does not come from a symmetric monoidal structure

on CW–Sp. Ultimately, when trying to prove things, it is important to be able to refer back to

a concrete point-set model such as CW–Sp, and it would then be desirable to have the smash

product directly available.

There are other constructions which do not suffer from the aforementioned disadvantages

that our construction suffers, but which are technically more difficult to construct. For us, the

disadvantages stated above will not pose an issue. We will simply take for granted that the category

of CW spectra satisfies all properties we wanted, and we will never need a point-set description of

a smash product of two spectra. We will therefore not consider any of the other constructions.
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1.2 First examples of spectra

We consider a few examples that we will need later on. If he wishes, the reader can find many

other examples in [12].

Example 1.2.1. The most important family of example was already considered in the previous

section. To every based space X we can associate a suspension spectrum, which we denote

by Σ∞X . The homotopy groups πS
∗ (Σ∞X ) are precisely the stable homotopy groups of the space X .

Example 1.2.2. Recall that objects in the stable homotopy category may be interpreted as

(generalized) cohomology theories. The standard example of cohomology is ordinary cohomology,

with coefficients in some abelian group G. It is represented by a spectrum, called the Eilenberg–

MacLane spectrum, denoted HG. If we take our coefficients not in an abelian group G but a

commutative ring R, the cohomology inherits a cup product, and this implies that the spectrumHR

is actually a commutative ring spectrum.

Recall that Eilenberg–MacLane spaces, from which these spectra are constructed, have only

one non-trivial homotopy group. Using this, one can deduce that πS
∗ (HG) is concentrated in

degree 0, and πS
0(HG) = G.

Example 1.2.3. The next spectrum will be used as an example in Section 1.4. Start out

with the identity map S→ S in the stable homotopy category. As this category is additive, we can

add up this map p times so as to yield what we call the multiplication-by-p map S ×p
−−→ S. The

cofibre of this map (or equivalently, Σ−1 of the fibre) is what we call the mod-p Moore spectrum,

denoted S/p, but also SZ/p or MZ/p. The cohomological functor Hom(S, · ) gives rise to a long

fibre sequence on homotopy groups, from which we can deduce that πS
0(S/p) = Z/p, and that, for

negative n, πS
n(S/p) is trivial. On the other hand, let’s take our distinguished triangle S ×p−−→ S →

S/p → ΣS, and this time smash it with the Eilenberg–MacLane spectrumHZ. As mentioned earlier,

the triangulation is compatible with smash products, so we end up with another distinguished

triangle. The same procedure yields another long fibre sequence, this time on homology groups

because [S, X ∧HZ]∗ = H∗(X ;Z) by definition. By investigating this long exact sequence, one easily

finds that, for positive n, Hn(S/p;Z) = 0.

Example 1.2.4. More generally, if G is an abelian group, then the Moore spectrum SG

or MG is a particular spectrum characterized by the properties π0(SG) = G, π<0(SG) = 0, and

H>0(SG;Z) = 0. The above discussion gave a construction in the special case where G = Z/pZ.

For more general Moore spectra, constructions become more difficult, but it suffices for us to know

that they exist.

Example 1.2.5. The next example we’ll discuss is complex K-theory. Let X be a compact

Hausdorff and connected topological space. Define the complex K-theory of X , denoted, KU0(X ),
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to be the group completion of the monoid of isomorphism classes of finite-dimensional complex

vector bundles on X .

Lemma 1.2.6. With the notation as above, we have an equality KU0(X ) � [X,BU × Z]. �

Proof: As X is compact Hausdorff, any map f : X → BU×Z factors through some BU(n)×{m}.

(Indeed, suppose this weren’t true. Then we could pick a point xk ∈ f (X )∩BU(k)×{m} for infinitely

many k. The space BU being normal, this would yield an infinite discrete subset of f (X ), which

is impossible by compactness.) So we can associate an n-dimensional complex vector bundle V ,

and a number m, to the homotopy class [f ] of f . In turn, we send the pair (V,m) to the pair

V − εn−m in KU0(X ), where εN denotes the trivial vector bundle of rank N . This defines a map

[X,BU × Z]→ KU0(X ). This map is easily seen to be injective.

To prove surjectivity, we first point out that any complex vector bundle over a compact Haus-

dorff space is a summand of some trivial bundle. That is, if W is a complex bundle on X , then

there is some W ′ so that W ⊕W ′ is isomorphic to the trivial bundle εN of some rank N . We use

this as follows. Take any element V −W of KU0(X ). Take a bundle W ′ so that W ⊕W ′ � εN . Now

V −W = (V ⊕W ′)− εN . Write m = rank(V ⊕W ′)−N . The element V −W is now seen to be the image

of a map f : X → BU × Z factoring through BU
(

rank(V ⊕W ′)
)
× {m}. This proves the result. �

We have defined complex K-theory for compact Hausdorff spaces, but we can extend the defi-

nition to more general spaces by representability. Moreover, we can extend this to a cohomology

theory represented by a spectrum KU, called the complex K-theory spectrum. In fact, KU can

be constructed as a CW spectrum, made out of BU × Z in even degrees, and of U in odd degrees.

The following classical result justifies this.

Theorem 1.2.7 (Bott Periodicity Theorem). We have homotopy equivalences Ω(BU×Z) � U

and ΩU � BU × Z. In both cases we have picked base-points for our spaces. �

Recall from Section 1.1 that any spectrum E yields an unreduced cohomology theory by writing

En(X ) = [Σ∞X+, E]−n. (More generally, there is a definition for pairs of spaces, which we ignore.)

In the case E = KU and n = 0, we find that KU0(X ) = [Σ∞X+,KU]. Let us sketch a proof that

this KU0 coincides with the one we defined earlier, at least for compact connected spaces.

Work in the framework of CW spectra. Thanks to compactness of X , a morphism Σ∞X+ → KU

is precisely some based map ΣkX+ → KUk, where KUk denotes the k-th space in the CW complex

that defines KU (i.e., either U or BU×Z). By the suspension–loop space adjunction, we may as well

write X+ → ΩkKUk, but by construction, ΩkKUk � KU0 = BU × Z. Thus every map Σ∞X+ → KU

corresponds to a map X+ → BU × Z. Similar arguments show that homotopies of maps of spectra

Σ∞X+ → KU correspond to homotopies of maps X+ → BU × Z.
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Example 1.2.8. The last family of spectra we will define are the Thom spectra. We will

only briefly consider their construction, but we cannot do much justice to its profound historical

significance.

Before we introduce them, we need the following notion, which will also be used in the next

section. Given an arbitrary vector bundle V → B over a paracompact base space, we define the

Thom space T (V ) as follows. First, using partitions of unity, construct a metric on the vector

bundle V , so that we may asssociate to it a disk bundle D(V ) and a sphere bundle S(V ). Define

T (V ) to be the space obtained by collapsing the subspace S(V ) of D(V ) to a point. If you don’t

care for metrics, the following definition might be more appealing. Start out with the set V t {∞}.

Topologize this set by declaring a neighbourhood of ∞ to be open if and only if its complement is

closed in V and the intersection with every fibre of V is compact.

We begin our construction with a space X , and a map X → BO, where X is usually something

fair like BU or BSO. Write X (k) for the pullback BO(k)×BOX . The tautological bundle ξk on BO(k)

pulls back to a bundle ξXk on X (k). Notice that the universal property of BO(k + 1) tells us that the

bundle ξXk ⊕ε
1 gives rise to a map X (k)→ X (k+1). We know write MX (k) for the Thom space T (ξXk )

of the bundle ξXk over X (k). The map X (k) → X (k + 1) induces a map T (ξ kX ⊕ ε
1) → MX (k + 1) on

Thom spaces. As T (ξ kX ⊕ε
1) is equivalent to ΣT (ξ kX ), we can write it as a map ΣMX (k)→ MX (k+1).

The spaces MX (k), along with these maps ΣMX (k)→ MX (k + 1), yield a CW spectrum, called

the Thom spectrum and denoted MX . In the special case where X is BO we write MO instead of

MBO, and likewise for the cases where X is, say, BU or BSO. The spectrum MU that arises in this

way is particularly important, and will end up being central in the next section. Without proof,

we mention one relevant property of Thom spectra. The proof can be found in [7, Prop. 2.17].

Lemma 1.2.9. Let X → BO be a map of H-spaces, where BO is equipped with the H-space

structure classifying direct sums. Then the Thom spectrum MX admits the structure of a ring

spectrum. If the H-space structure on X is commutative, then MX is commutative as well. �

Before we close off, I want to briefly talk about the aforementioned historical equivalence.

The reader can safely skip this paragraph if he wishes. Thanks to the work by Thom, we know

that there is a deep relationship between the Thom spectra, and cobordism of manifolds. Most

prominently, the Pontryagin–Thom construction establishes an isomorphism between the bor-

dism group ΩX
n of n-manifolds with an X-structure on their stable normal bundle, and the n-th

stable homotopy group πS
n(MX ). The construction allows us to view the bordism groups from a

homotopy-theoretic viewpoint, and this has led to significant results in the calculation of bordism

groups.
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1.3 Complex orientations

We start out this section with the following well-known and classical theorem, known as the

Thom isomorphism theorem.

Theorem 1.3.1 (Thom Isomorphism Theorem). Let p : V → B be a rank-n oriented real

vector bundle over a paracompact base space. There exists an element u ∈ Hn(V, V \ B), called

the Thom class of V , such that, for every fibre Vb the restriction of u to (Vb, Vb \ {0}) is the class

induced by the orientation of V . Moreover, the map Hk(V )→ Hk+n(V, V \ B) obtained by cupping

with u is an isomorphism. �

Proof sketch: The Thom class can be constructed directly by invoking the orientation on our

bundle. Given the Thom class, the isomorphism Hk(V ) � Hk+n(V, V \ B) is given by a direct

application of the Leray–Hirsch theorem. �

Rather than working with relative cohomology, we can invoke Thom spaces instead, leading

to the following lemma. It allows us to conclude a direct relation between the cohomology of the

total space of a vector bundle, and the cohomology of the associated Thom space.

Lemma 1.3.2. If V → B is a vector bundle, then Hp(V, V \ B) � H̃p(T (V )
)
. �

Proof: The right-hand side is isomorphic to Hp(D(V ), S(V )
)

as S(V ) is a nice inclusion

into D(V ). By homotopy invariance, we can write this as Hp(D(V ), D(V ) \ B
)
. Viewing V as

the complex complement of the boundary of D(V ), we may apply the excision theorem to conclude

the desired result. �

In this section, we first expand on the above idea, and then use it to define complex orien-

tations. Roughly speaking, a complex orientation on a multiplicative cohomology theory is the

assignment of a Thom class to every complex vector bundle. The main question we will then be

concerned with is how Thom classes of line bundles behave under taking tensor products. We will

see that this behaviour can be described in terms of formal group laws. This will end up being the

starting point of a deep connection between formal groups and algebraic topology. Our discussion

will closely follow [7, Sections 2.6, 2.7 and 2.9].

If E is a ring spectrum representing a multiplicative cohomology theory, we define a Thom

class to be any element of Ẽn
(
T (V )

)
whose restriction to every compactified fibre Vb yields a

generator of Ẽn(Vb) � Ẽn(Sn) � Ẽ0(S0) as a module over itself. A vector bundle admitting such a

Thom class is called E-orientable, and a choice of a Thom class is also called an E-orientation.

We point out that, unlike the case of ordinary cohomology, a choice of Thom class need not be

unique, even up to sign.
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Theorem 1.3.3. Let p : V → B be an E-orientable rank-n vector bundle, with Thom class

u ∈ Ẽn
(
T (V )

)
� En(V, V \ B). Then cupping with u yields an isomorphism Ek(V ) ∼−→ Ek+n(V, V \ B),

hence Ek(V ) � Ẽk+n(T (V )
)
. �

Proof: The proofs of both Theorem 1.3.1 and Lemma 1.3.2 carry over to generalized coho-

mology theories. In particular, invoking the Leray–Hirsch theorem is still valid — see [13, Thm.

15.47]. �

Thom classes can be pulled back. Consider a map of spaces f : X → Y , and let V → Y be an

E-orientable rank-n vector bundle. We can pull this bundle back to a bundle f ∗V over X . The

morphism f ∗V → V induces a morphism of corresponding Thom classes, and hence a morphism of

E-cohomology groups in the opposite direction. Under this morphism, a Thom class u ∈ Ẽn
(
T (V )

)
gets sent to a class in Ẽn

(
T (f ∗V )

)
, which is a Thom class for f ∗V .

Let E be a multiplicative cohomology theory. Write BU(1) for the classifying space of complex

line bundles. It comes equipped with a line bundle γ, often called the tautological bundle. We

say E is complex-orientable if the line bundle γ is E-orientable. A choice of E-orientation for γ

is what we call a complex orientation of E. For any decent space X , then, complex line bundles

over X correspond to homotopy classes of maps X → BU(1), and the bundle over X can be obtained

by pulling back the Thom class of BU(1) to a Thom class of the line bundle of X . Thus, complex

orientations give a natural choice of Thom classes for all complex line bundles, over every space.

To demontrate the computational advantages of a complex orientation, we compute the coho-

mology rings of complex projective space.

Lemma 1.3.4. Let E be a complex-oriented cohomology theory. Denote by un the Thom class

in E2(T (Vn)
)

of the tautological bundle Vn → CPn of CPn, and write in for the inclusion of the zero

section CPn ↪→ T (Vn), inducing a map on cohomology i∗n : Ẽ∗
(
T (Vn)

) ∼
−→ E∗(Vn, Vn \CPn)→ E∗(CPn).

For all finite n, we have a ring isomorphism E∗(CPn) � E∗[i∗nun]/((i∗nun)n+1), and in the infinite

case, we have E∗(CP∞) � E∗[[u∞]]. �

A few comments might be useful. First, we emphasize that the Thom class has degree 2 rather

than degree 1, because the bundles over CPn are complex. Second, in the ring isomorphism, we

have used E∗ as a shorthand for the coefficient ring of E. Finally, we remark that the double

brackets in the cohomology of CP∞ may be surprising, as it would imply that, for ordinary co-

homology, H∗(CP∞) is Z[[u]] rather than Z[u]. This is because we adopt the convention that the

cohomology ring E∗( · ) is a product over the Ek( · ), rather than a direct sum.

Proof sketch of Lemma 1.3.4: The key observation is that CPn+1 is homotopy equivalent to the

Thom space T (Vn), hence Theorem 1.3.3 tells us that Ek(CPn) � Ẽk+2(CPn+1). This allows us to

relate the cohomology of CPn to that of CPn+1, so that we can proceed by induction. The base case

is given by n = 0. The space CP0 is a single point, so E∗(CP0) = E∗(∗) = Ẽ∗(S0), as desired.
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For the case n = ∞, there are two ways to proceed. The Milnor sequence states that if we have

a diagram of spaces X0 → X1 → X2 → · · · whose homotopy colimit is X , then there’s a short exact

sequence

0 lim1E∗−1(Xi) E∗(X ) lim
←−−i

E∗(Xi) 0

Our tower of maps is surjective, so that the Mittag-Leffler condition is satisfied and lim1 vanishes.

Alternatively, it is known that being complex-orientable is equivalent to the degeneration of the

Atiyah–Hirzebruch spectral sequence at the second page (see [5, Lecture 1]) which allows us to

effectively compute the cohomology of CP∞ as well. �

More elaborate versions of the argument above allows us to compute the cohomology groups

for some related spaces as well. For example, the cohomology E∗((CP∞)×n) of the n-fold product of

the infinite-dimensional projective space is E∗[[x1, . . . , xn]], where the generators are the pullbacks

of the generator of E∗(CP∞) along the various projection maps.

We know that complex orientations give rise to a choice of Thom class for line bundles. But

more is true than that: they yield a choice of Thom class for all complex vector bundles, no matter

what rank. This can be done thanks to the splitting principle: for any rank-n complex vector

bundle V → B, one can find a fibration p : PV → B with fibre CPn−1 such that the pullback bundle

p∗V → PV splits into a direct sum L1 ⊕ · · · ⊕ Ln of line bundles. For each of these line bundles,

the complex orientation allows one to give a class in E2(T (Li)
)
, which may be cupped to a class in

E2n(T (L1 ⊕ · · · ⊕ Ln)
)
. One can then argue that this class must in fact be in the image of the map

E2n(T (V )
)
→ E2n(T (L1 ⊕ · · · ⊕ Ln)

)
. To do this, one needs to relate the E-cohomology of PV with

that of B, either by invoking the Atiyah–Hirzebruch spectral sequence or using the Leray–Hirsch

theorem for generalized multiplicative cohomology (see [13, Thm. 15.47]).

We now explain how formal group laws pop up from complex orientations. Up to homotopy,

there is a natural map m : CP∞×CP∞ → CP∞ classifying the tensor product bundle pr∗1 η∞⊗pr∗2 η∞.

It carries a certain ubiquity because in a sense, it encodes tensor products. To make this precise,

let L and L′ be two line bundles on a space X , classified by maps f1 : X → CP∞ and f2 : X → CP∞.

Then the tensor product L ⊗ L′ is classified by the composition of the product map f1 × f2 with the

multiplication map m.

The map m induces a map E∗[[x]] → E∗[[x1, x2]] on cohomology. As we will see in all that

follows, lots of deep information about E is contained within this particular map on cohomology,

so we make sure to spend a good amount of time on it. We may look at the image of the mono-

mial x, which is a formal power series f (x1, x2). In decent cases, this formal power series entirely

determines the map on cohomology, and in any case, it determines a good chunk of it.

The properties of the tensor product operation manifest themselves as properties of the power

series f (x1, x2). For instance, consider the map CP∞ → CP∞ × CP∞ obtained by inclusion into
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the first factor, and compose it with m. Essentially by definition this is homotopic to the identity

map. One can check that this translates into the requirement that f (x1,0) = x1; by symmetry,

we also have f (0, x2) = x2. In a similar vein one can show that the associativity of m (up to

homotopy, that is) translates into the requirement that f
(
x1, f (x2, x3)

)
= f

(
f (x1, x2), x3

)
, and that

the commutativity yields f (x1, x2) = f (x2, x1). Taken together, these restrictions are precisely what

defines a one-dimensional formal group law over E∗, which we investigated in Appendix A.

The reader might have noticed that we wrote E∗ instead of E∗. As rings, E∗ and E∗ are the

same, so that a formal group law over one is equivalent to a formal group law over the other,

hence we have equivalent ring maps L → E∗ and L → E∗. The gradings of E∗ and E∗ however are

reversed, and only the ring map L → E∗ is a map of graded rings, with respect to the grading on L

introduced below Theorem A.2.2.

The generators x, x1, and x2 are not canonical, as they depend on the choice of a Thom class.

The formal group law that arises from the map m may therefore not be fixed either. Nonetheless,

we have the following result.

Lemma 1.3.5. The formal group law associated to a complex-oriented cohomology theory is

independent of the choice of complex orientation, up to isomorphism. �

Proof: Let E be a cohomology theory, with two complex orientations, corresponding to two

choices of Thom classes u1, u2 of the tautological bundle of CP∞. By Lemma 1.3.4 we have

E∗(CP∞) � E∗[[u1]] � E∗[[u2]], and the isomorphism E∗[[u1]] ∼−→ E∗[[u2]] is uniquely determined by

the image of u1, which can be expressed by some formal power series h(t) with coefficients in E∗.

Let f1(x, y) and f2(x, y) be the formal group laws associated to the two complex orientations. By

naturality of the diagram
E∗[[u1]] E∗[[(u1)1, (u1)2]]

E∗[[u2]] E∗[[(u2)1, (u2)2]]

it immediately follows that h
(
f1(x, y)

)
= f2

(
h(x), h(y)

)
, which, by symmetry, is an isomorphism of

formal group laws. �

Example 1.3.6. The two simplest examples are ordinary cohomology and complex K-theory,

both of which are orientable. With purely algebraic arguments one can show that the formal

group law associated to HZ is given by the additive formal group law; the same holds for ordinary

cohomology with other coefficients, although the underlying coefficient ring of the formal group

law will be different. To determine the formal group law of complex K-theory, one uses Bott

periodicity to find it to be the multiplicative formal group law. More details on this can be found

in [7, Section 2.7].
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Consider a morphism E → E′ of ring spectra. If E is complex-orientable then so is E′; indeed,

any choice of Thom class u ∈ Ẽ2(T (γ)
)

for the tautological bundle γ over BU(1), can be sent to a

class in Ẽ′2
(
T (γ)

)
, which one can show is an E′-orientation for γ. We have a commuting diagram

E∗[[x]] E∗[[x1, x2]]

E′∗[[x]] E′∗[[x1, x2]]

induced by the tensor product of line bundles, thanks to naturality. This tells us that the formal

group law over E′∗ is the pullback of the formal group law over E∗ along the ring map E∗ → E′∗.

A short aside. Just for fun, let’s see an easy application of complex orientable to a concrete

question about spectra. If pressed for time the reader can skip this result.

Lemma 1.3.7. HZ/p ∧ KU = 0. �

Proof: The maps HZ/p → HZ/p ∧ KU (defined by smashing HZ/p with the sphere spectrum

on the right, and considering the map Id∧0) and KU → HZ/p ∧ KU (defined similarly) induce

two complex orientations on the smash product. By Example 1.3.6 and Example 1.3.6, these two

formal group laws are the additive and multiplicative formal group law, respectively. By virtue

of Lemma 1.3.5, these two formal group laws must be isomorphic.

The map HZ/p → HZ/p ∧ KU gives rise to a morphism on homotopy groups πS
∗ (HZ/p) →

πS
∗ (KU). In Example 1.2.2, we saw that the stable homotopy groups of HZ/p form a ring of

characteristic p, hence so is πS
∗ (HZ/p ∧ KU). In Example A.3.5, however, we determined that in

such a ring, the additive and multiplicative formal group law cannot be isomorphic. The only way

out is for πS
∗ (HZ/p ∧ KU) to be 0, which by Theorem 1.1.1 implies that the spectrum must be

trivial. �

In the previous section, Example 1.2.8, we introduced what we called Thom spectra. It turns

out that these Thom spectra are related to complex orientations, in the following way. We refer

the reader to [7, Prop. 2.25] for a proof.

Theorem 1.3.8. For any ring spectrum E, complex orientations on E are in one-to-one

correspondence with ring spectrum maps MU → E in Ho(Sp). Here we endow MU with the ring

structure obtained in Lemma 1.2.9. �

There is a canonical complex orientation on MU, corresponding to the identity map MU→ MU,

and it gives rise to a formal group law over MU∗. Now take any complex orientation on a ring

spectrum E. By Theorem 1.3.8, the formal group law over E∗ determined by this orientation is the

pullback of the formal group law over MU∗ along the map MU∗ → E∗. It makes sense, then, to ask
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what this ‘universal’ formal group law over MU∗ should be. By Theorem A.2.2, our formal group

law over MU∗ corresponds to a ring map L → MU∗. We have the following result.

Theorem 1.3.9 (Quillen’s Theorem on MU). The ring map L → MU∗ induced by the

canonical orientation on MU is an isomorphism of rings. �

A proof of the above theorem can be found in [5, Lectures 8–10]. We use the theorem to

endow L with a natural grading, namely, the one corresponding to the grading of MU∗. For any

complex-orientable ring spectrum E, the ring map L → π∗E that corresponds to the formal group

law over π∗E will then automatically be a morphism of graded rings.

1.4 Bousfield localizations

In this section we introduce the general notion called Bousfield localization of spectra, and

investigate some of its properties. We closely follow Bousfield’s original paper [1], with additional

remarks and proofs wherever we deem it useful to the reader.

Throughout this section we work within the stable homotopy category. Let E be a spectrum.

A morphism f : A → B in Ho(Sp) is called an E-equivalence if the induced map f∗ : Ẽ∗(A)→ Ẽ∗(B)

is an isomorphism. Equivalently by Whitehead’s theorem (1.1.1) the induced map E ∧ A → E ∧ B

is an isomorphism. A spectrum A is called E-acyclic if Ẽ∗(A) � 0. Again by Theorem 1.1.1, A is

E-acyclic if and only if E ∧ A � 0.

Lemma 1.4.1. A morphism f : A → B is an E-equivalence if and only if B/A is E-acyclic. �

Proof: In our discussion on the stable homotopy category, we learned that smash products

preserve cofibres. That is, the cofibre of the map E ∧ A → E ∧ B is given by E ∧ (B/A). But the

map E ∧A → E ∧B is an isomorphism, so when we write down the long cofibre and fibre sequence

associated to the map E ∧ A → E ∧ B we find that, for any spectrum X , [E ∧ (B/A), X ]∗ = 0 and

[X, E ∧ (B/A)]∗ = 0; both are sufficient to imply that E ∧ (B/A) � 0, hence B/A is E-acyclic, as

desired. Every step in the above proof can be inverted to yield a proof for the opposite direction. �

A spectrum X is called E-local if, for any E-acyclic spectrum A, we have [A, X ]∗ � 0.

Lemma 1.4.2. Let X and E be two spectra. Then X is E-local if and only if, for any E-

equivalence f : A → B, the induced map f ∗ : [B, X ]∗ → [A, X ]∗ is an isomorphism. �

Proof: Let C be an E-local spectrum, and let A be E-acyclic. Then the zero morphism 0→ A is

an E-equivalence; the induced isomorphism between [0, C]∗ and [A, C]∗ proves the desired result.

Conversely, suppose that [A, C]∗ = 0 for every E-acyclic spectrum A. Consider an arbitrary E-

equivalence f : A → B. Associated to the distinguished triangle A → B → B/A is the long cofibre

sequence · · · → [ΣA, C]∗ → [B/A, C]∗ → [B, C]∗ → [A, C]∗ → [Σ−1A, C]∗ → · · · . By Lemma 1.4.1,
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the spectrum B/A is E-acyclic (and therefore so are its shifts Σn(B/A)) hence exactness of the long

cofibre sequence implies [B, C]∗ � [A, C]∗, as desired. �

We remark that the above lemma fails in the non-stable world. This is the first indication that

localizations are very well-behaved in the stable world.

Lemma 1.4.3 (E-Whitehead Theorem). Any E-equivalence between E-local spectra is an

isomorphism in Ho(Sp). �

Proof: Denote by f : A → B an E-equivalence between E-local spectra. The induced maps

f ∗ : [B, B]∗ → [A, B]∗ and f ∗ : [B, A]∗ → [A, A]∗ are, by definition of E-locality, isomorphisms. The

isomorphisms guarantee the desired existence of a left and right inverse of f . �

Lemma 1.4.4. The following claims hold.

� Module spectra over a ring spectrum E are E-local.

� If A → B → C → ΣA is a distinguished triangle in Ho(Sp) and two of the three spectra A,

B and C are E-local, then so is the third.

� E-local spectra are closed under products, and more generally, under arbitrary small

homotopy limits.

� E-local spectra are closed under retracts. �

Proof: Let M be a module spectrum over a ring spectrum E, and let A be an E-acyclic

spectrum. Consider any map f : A → M, which we aim to show is the zero map. Decompose f as

in the diagram below:

S ∧ A E ∧ A E ∧M

A M

e∧IdA Id∧f

ρ0∧Id

f

Here the first map exists because S is the unit of the smash product. Now, the object E∧A is trivial,

since A is E-acyclic. Hence f must be the zero map. The second part follows by considering the

long fibre sequence of the distinguished triangle, obtained by applying Hom(X, · ) for any E-acyclic

spectrum X . The claim regarding products is obvious, and we skip the generalization to arbitrary

small homotopy limits as we will never need this. Finally, let A be a retract of X . There exist maps

A → X → A that compose to the identity. For any E-acyclic spectrum B, we have a composition

[B, A]∗ → [B, X ]∗ → [B, A]∗, factoring through the zero object, which composes to the identity. It

must be the case that [B, A]∗ � 0. �

An E-localization of a spectrum X is an E-equivalence X → LEX such that LEX is E-local.

By Lemma 1.4.3 any E-localization must be unique up to isomorphism. Bousfield’s goal was

to show that we can make a functorial choice of a E-localized spectrum for every spectrum X .
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In other words, there exists a functor LE : Ho(Sp) → Ho(Sp), called the E-localization functor

together with a natural transformation Id→ LE, such that X → LEX is an E-localization for all X .

Lemma 1.4.5. Every E-localization f : X → LEX satisfies the following universal conditions.

It is initial among those morphisms X → Y with Y an E-local spectrum; on the other hand, it is

terminal among the E-equivalences X → Y . �

Proof: As for the first claim, suppose we have a morphism X → Y with Y an E-local spectrum.

By Lemma 1.4.2, Y being E-local tells us that the E-equivalence X → LEX gives rise to an

isomorphism [LEX, Y ]∗ → [X, Y ]∗, from which a unique map LEX → Y follows. The other claim is

proved similarly. �

This lemma suggests a way of obtaining E-localizations. For any spectrum X , consider the

collection of all E-equivalences X → Y , and take the colimit, or perhaps take all maps X → Y with

E-local and consider the limit inside the category of spaces under X . Unfortunately, the collection

of E-equivalences and of E-local spectra may well be proper classes, so taking the colimit is a

set-theoretically unsound procedure. As it turns out, this is more or less the only obstruction to

our naive approach, and a large part of [1] is dedicated to showing that there is a way to get around

this issue. In fact, Bousfield shows an even stronger result: every spectrum can be decomposed

into an E-local spectrum and an E-acyclic spectrum. We state the result below; it can also be

found as Thm. 1.1 of Bousfield’s paper.

Theorem 1.4.6. For any spectrum A, there is a natural triangle EA → A → LEA → Σ(EA)

in Ho(Sp) such that EA is E-acyclic, and LEA is E-local. In particular, the localization functor

LE : Ho(Sp)→ Ho(Sp) exists. �

Corollary 1.4.7. The full subcategory of the stable homotopy category consisting of only the

E-local spectra is equivalent to the category obtained by formally inverting the E-equivalences in

Ho(Sp). �

It is sometimes said that the subcategory of E-local spectra is what is left of the stable homo-

topy category after considering only the information that E grants us. The above corollary makes

this precise: we formally invert anything that the E-homology theory cannot distinguish between.

From this point on, we refer to either of the two equivalent categories in the above statement as

the E-local stable homotopy category.

Proof: Just temporarily we’ll write Ho(Sp)/E for the localization at the E-equivalences, and

we’ll write Ho(Sp)E for the subcategory of E-local spectra. By Theorem 1.4.6, there is a functor

LE : Ho(Sp) → Ho(Sp)E, and it admits the inclusion functor i : Ho(Sp)E → Ho(Sp) as its right

inverse. By Lemma 1.4.3, we know that LE passes through Ho(Sp)/E. The functors LE and i

between Ho(Sp)/E and Ho(Sp)E define mutually inverse functors. As i is the right inverse to LE,
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i ◦ LE � Id automatically; on the other hand, the isomorphism LE ◦ i � Id follows from the natural

E-equivalences X → LEX provided by Theorem 1.4.6. �

Two spectra E and F are said to be Bousfield equivalent if Ẽ∗(X ) = 0 if and only if F̃∗(X ) = 0

for all spectra X .

Lemma 1.4.8. If LE and LF are isomorphic, then E and F are Bousfield equivalent, and

conversely, Bousfield equivalent spectra induce isomorphic localization functors. �

Proof: If E and F are Bousfield equivalent spectra, then a spectrum is E-local if and only if

it is F -local. Using the first universal property of the localization in Lemma 1.4.5, it must be the

case that LEX and LFX are naturally isomorphic, for all X . Conversely, suppose there’s a natural

isomorphism between LE and LF . The triangle in Theorem 1.4.6 tells us that a spectrum A is E-

acyclic if and only if LEA = 0, while it is F -acyclic if and only if LFA = 0. The natural isomorphism

ensures that these two hypotheses are equivalent. �

Generally speaking, Bousfield localizations of spectra are rather illusive, in the sense that it

can be hard to describe them explicitly — and indeed the general existence of proof in [1] is rather

non-constructive. Under some additional conditions, however, there is more to be said. For

instance, in the same paper, Bousfield shows that for connective spectra, Bousfield localizations

admit a reasonably accessible description, which we won’t need and therefore won’t state. Another

situation in which localization becomes nice is when the localization is smashing. We say a

spectrum E is smashing if, for all spectra X , LEX � X ∧ LES.

Example 1.4.9. Let SG be any Moore spectrum, first considered in Example 1.2.4. Then

it makes sense to localize a spectrum X with respect to SG so as to yield a spectrum LSGX . An

important example is localization at the Moore spectrum S/p, also called p-completion. Let’s

expand on what it means for a spectrum X to be E-local, where E = S/p. It means that, for any

E-acyclic spectrum A, we have [A, X ]∗ = 0. In turn, a spectrum A is acyclic if A ∧ S/p = 0. As

taking cofibres commutes with smash products, this is equivalent to saying that the cofibre of the

map A∧ S Id∧(×p)
−−−−−−→ A∧ S is trivial. Put in short, A being acyclic means that the multiplication-by-p

map A ×p
−−→ A is an isomorphism in Ho(Sp).

Another special case is when G = Z(p). In that case, localization at SG is called p-localization.

Rather than writing the rather clumsy LSZ(p)X , one often sees the notation X(p) instead. Without

giving a proof, we state the following result, referring the interested reader to [1, Prop. 2.4], and

the references mentioned therein, for more information.

Lemma 1.4.10. Localization at the Moore spectrum SZ(p) is smashing, and for any spec-

trum X , we have π∗LSZ(p)X � π∗(X ) ⊗ Z(p). �
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Example 1.4.11. A particularly important example is the localization of complex K-theory.

We denote the p-localized complex K-theory spectrum by KU(p). In turn, any spectrum X can be

localized at KU(p), and in fact studying the KU(p)-local stable homotopy category will be the main

goal of this thesis.

We know from Example 1.3.6 that KU admits a complex orientation, corresponding to some

ring map MU → KU. We may compose this with the p-localization map to obtain a complex

orientation on KU(p), whose formal group law is essentially the same except taken over the ring

πS
∗ (KU(p)) � πS

∗ (KU) ⊗ Z(p) � Z(p)[u±1].
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Chapter 2

Hopf algebroids and algebraic stacks

The goal of this chapter is to introduce Hopf algebroids and algebraic stacks. Briefly speaking,

Hopf algebroids are groupoid objects in the category of affine schemes, and algebraic stacks are

groupoid-valued sheaves on the category of affine schemes satisfying a descent condition. We

spend some time introducing both notions, before investigating the relation between them.

2.1 Groupoid objects and Hopf algebroids

Recall first that a groupoid is just a category whose morphisms are invertible. In particular,

a one-object groupoid is just a group when looking at the set of morphisms. Given a category C

admitting finite fibre products, a groupoid object in C consists of a pair of objects (O,M) in C —

the O stands for ‘objects’ and the M stands for ‘morphisms’ — along with five morphisms

srce, trgt : M → O ,

unit : O → M ,

inv : M → M ,

comp: M ×O,srce,trgt M → M .

We ask for the morphisms to satisfy the following axioms. Rather than remembering them, we

urge the reader to understand why the axioms are as they are.

srce ◦ unit = trgt ◦ unit = IdO ,

srce ◦ comp = srce ◦ pr1 and trgt ◦ comp = trgt ◦ pr2 ,

comp ◦ (IdM ×comp) = comp ◦ (comp × IdM ) ,

comp ◦ (unit ◦ srce, IdM ) = comp ◦ (IdM , unit ◦ trgt) = IdM ,

inv ◦ inv = IdR , srce ◦ inv = trgt , trgt ◦ inv = srce ,

comp ◦ (IdR, inv) = unit ◦ srce , comp ◦ (inv, IdR) = unit ◦ trgt .

29



Example 2.1.1. If O is the final object of our category C, so that the source and target maps

are the trivial ones, then M is a group object in the category of C. Conversely, any group object

can be turned into a groupoid object in this way.

Lemma 2.1.2. A pair (O,M) is a groupoid object in C if and only if their functors of points

give rise to a (strict) functor Cop → Grpd. �

Proof: If (O,M) is a groupoid object, then for any object X , Hom(X,O) and Hom(X,M) form the

object and morphism set of a groupoid. For any morphism X → X ′, we get a functor of groupoids

in the opposite direction. This association is strictly commutative. Conversely, if the functors of

points of O andM can be lifted to a strict functor Cop → Grpd, then the Yoneda Lemma implies that

this structure comes from morphisms on O and M that automatically turn them into a groupoid

object. �

A (commutative) Hopf algebroid is nothing but a groupoid object in the category of affine

schemes. The definition has an obvious extension to the relative context, where we instead ask for

a Hopf algebroid to be a groupoid object in the category of affine R-schemes for some base ring R.

Example 2.1.3. The most important example for us is the pair (Spec L,SpecW ), where L

and W are the rings introduced in Section A.2. We verified in that section that, given an affine

scheme SpecA, Hom(SpecA,Spec L) and Hom(SpecA,SpecW ) form the object and morphism set

of a groupoid. Moreover, the operations defining this groupoid are natural in the sense that, for

any morphism SpecA → SpecA′, the corresponding map on Hom-sets is a functor on groupoids.

Lemma 2.1.2 then implies that the pair (L,W ) forms a Hopf algebroid.

The following technical restriction will often be imposed. A Hopf algebroid is said to be flat if

either the source or the target, or equivalently both of them, is a flat morphism of schemes (or a

flat ring map, if you prefer). We point out that the unit maps are then automatically faithfully flat,

as they have an inverse defined by the unit map.

Let (SpecA,Spec Γ) be a Hopf algebroid. Then a left comodule over our Hopf algebroid is an

A-module M, along with a Γ-coaction in the form of an A-module morphism ψ : M → Γ ⊗A M,

satisfying the property that the diagrams

M A ⊗A M

Γ ⊗A M

∼

ψ unit]⊗IdM
and

M Γ ⊗A N

Γ ⊗A M Γ ⊗A Γ ⊗A M

ψ

ψ comp]⊗IdM

ψ⊗IdM

should both commute. Notice that they encode dualized versions of unitality and the action

property. A right comodule is defined analogously, but this notion is equivalent. We will therefore

always stick to left comodules, and simply refer to them as comodules over (SpecA,Spec Γ), or

even just as Γ-comodules. There is an obvious notion of a morphism of Γ-comodules: it is a
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morphism of A-modules that is compatible with the Γ-coaction in the way that one would expect.

This yields a category Γ–Comod.

Every Γ-comodule has an underlying A-module structure. Conversely, given an A-module M,

there is a natural way to associate a Γ-comodule to it: take the tensor product Γ ⊗A M, and notice

that it has a natural Γ-coaction induced by the comultiplication map on Γ. This defines a functor

A–Mod→ Γ–Comod, which one can show is a right adjoint to the forgetful functor.

Lemma 2.1.4. The category of comodules over a flat Hopf algebroid is an abelian category. �

Proof sketch: Even without flatness, the category of comodules is an additive category, so it

remains to be shown that we have kernels and cokernels, and they behave as desired. We give the

construction of the kernels, indicating where flatness is needed, leaving the dual construction of

cokernels and the remaining verifications to the reader.

Take a morphism f : M → M ′ of comodules over (SpecA,Spec Γ). Start out with the kernel K

of the underlying morphism of A-modules. We endow K with a coaction K → Γ ⊗A K as follows.

We have a commutative diagram of A-modules

K M M ′

Γ ⊗A K Γ ⊗A M Γ ⊗A K′

f

ψ ψ′

IdΓ ⊗f

The top row is left-exact by definition, and hence by flatness of Γ, so is the bottom row. This

means that Γ⊗A K is isomorphic to the kernel of the map IdΓ ⊗f . The universal property of kernels

now forces the dashed arrow to exist. This dashed arrow satisfies the axioms of a coaction, thus

turning K into the desired Γ-comodule. �

The category of Γ-comodules has enough injectives. We sketch how the reader can prove this,

if he wishes to do so. The category of A-modules is known to have enough injectives (see [11,

Tag 01DD]). Let M now be a Γ-comodule, and write MA for the underlying A-module of M. Take

a monomorphism from the A-module MA into some injective A-module I. By the aforementioned

cofree adjunction, we have a morphism of Γ-comodules M → Γ ⊗A I. A direct verification shows

that this morphism is also a monomorphism, and that Γ ⊗A I is injective.

Since we have enough injectives, we have a well-defined notion of an Ext-functor in the

category of Γ-comodules, and, more generally, we can define right-derived functors of any left-

exact functor.

Example 2.1.5. Under suitable conditions, ring spectra admit the structure of a Hopf alge-

broid, and hence give rise to an algebraic stack via the correspondence introduced in the previous

section. Our next aim in this section is to briefly expand on this, following [13, Ch. 17]. Our
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story begins with a commutative ring spectrum E, and assume that E is evenly graded — that is,

the ring π∗(E) only has evenly graded homogeneous elements. This ensures that the ring π∗(E)

is commutative rather than just anti-commutative. Without this assumption, we’d end up with a

non-commutative generalization of Hopf algebroids. While still interesting, this will not fit within

the framework introduced in Section 2.2 and beyond (or, at least, not easily), hence we impose

the condition.

Under an additional hypothesis which we mention in a moment, the pair of commutative rings

(π∗E, Ẽ∗E) is going to form a Hopf algebroid. Looking back at the definition of a Hopf algebroid, the

reader should convince himself that we need the following maps. A multiplication on Ẽ∗E turning

it into a commutative ring; source and target maps π∗E → Ẽ∗E; an inversion map Ẽ∗E → Ẽ∗E; a

unit map Ẽ∗E → π∗E; a composition map Ẽ∗E → Ẽ∗E ⊗π∗E Ẽ∗E. All but the very last one have a

straightforward definition.

The multiplication Ẽ∗E ⊗Z Ẽ∗E takes two maps f : ΣkS→ E ∧ E and g : Σ`S→ E ∧ E, smashes

them into a map f ∧ g : Σk+`S → E ∧ E ∧ E ∧ E, then applies the multiplication µ : E ∧ E → E to

the first and third component, and to the second and fourth component. The source and target

maps π∗E → Ẽ∗E takes a map f : ΣkS → E, and smashes it either from the left or the right with

the unit map η : S → E that is part of the monoid structure of E. The inversion map Ẽ∗E → Ẽ∗E

takes a map f : ΣkS→ E ∧E, and swaps the two components in the wedge product. The unit map

Ẽ∗E → π∗E composes a class in Ẽ∗E with the multiplication µ.

What about the composition map? We impose the additional constraint that Ẽ∗E is flat as a

module over π∗E, where we can choose either one of the two module structures induced by the

source and target map. Such ring spectra are called flat. In that case, [13, Thm. 13.75] tells

us that Ẽ∗(E ∧ E) � Ẽ∗E ⊗ Ẽ∗E. The composition map is now easy to define: start with a class

f : ΣkS→ E∧E. Now smash this class with itself to find a map Σ2kS→ E∧E∧E∧E. Apply µ to the

second and third component of this wedge product. Finally, apply the isomorphism mentioned

above to find the two maps ΣkS→ E ∧ E.

In the next sections, we will talk about algebraic stacks, and then discuss exactly how Hopf

algebroids are related to them. For more algebraic theory on Hopf algebroids, I also refer the

reader to [9, Appendix A1].

2.2 Stacks over sites

In this section we recall some basic definitions about sites, sheaves, and stacks over sites.

We will assume that the reader has seen the material before, and will therefore be rather concise

here. For more details I refer the reader to [11, 00UZ] and [14, Section 2.3] for a discussion on

sites and sheaves, and to [14, Ch. 3 and 4] for an introduction to stacks.
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Let C be a category admitting finite fibre products. A Grothendieck topology on C is a

set Cov(C) of families of morphisms {Ui → U } with fixed targets, called coverings of C or of U ,

such that the following axioms are satisfied.

� If V → U is an isomorphism then {V → U } is in Cov(C);

� if {Ui → U } forms a cover of U , and for each i, {Vij → Ui} forms a cover of Ui , then the set

of morphisms {Vij → U } obtained by taking all compositions covers U ;

� if {Ui → U } is a covering of U , and V → U is some morphism, then {Ui ×U V → V } forms a

covering of V .

A category equipped with a Grothendieck topology is called a site.

Let C be a site. Recall that a (Set-valued) presheaf on C is defined to be nothing but a functor

from Cop to Set. A presheaf F is called a sheaf if for every covering {Ui → U } in C the diagram

F (U )
∏
i∈I

F (Ui)
∏
i,j∈I

F
(
Ui0 ×U Ui1

)
is an equalizer diagram. Here the two right arrows are the two obvious projection maps. In exactly

the same way, one can define sheaves of rings, sheaves of modules, sheaves of algebras, and so

on. A morphism of sheaves is defined in the same way as a morphism of presheaves.

For every object X , the functor hX = Hom( · , X ) : Cop → Set is a presheaf. In general, it need

not be a sheaf. A site for which all representable functors are sheaves is also called subcanonical.

The sites that we are interested in are all subcanonical.

Example 2.2.1. There are many examples of Grothendieck topologies on the category Sch/S

of schemes over a fixed base scheme S. We give two of them. The most well-known one is the

Zariski site, where we declare a collection of morphisms to be a covering if the underlying maps

of topological spaces form an open covering with respect to the Zariski topology. We sometimes

denote this site by (Sch/S)Zar.

Next we define the fpqc topology, following [14, Section 2.3.2]. Let π : X → Y be a morphism of

schemes. We call it fpqc if it is faithfully flat, and in addition either of the two following equivalent

properties are satisfied.

� Every quasi-compact open subset of Y is the image of a quasi-compact open subset of X ;

� there exists an affine open covering {SpecRi} of Y such that each SpecRi is the image of a

quasi-compact open subset of X .

Notice in particular that, if Y is affine and X is quasi-compact, an fpqc morphism is just a faithfully

flat morphism. We now define the fpqc topology on Sch/S to be the topology in which the

coverings {Ui → U } are the collections of morphisms such that the induced morphism
⊔
i Ui → U
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is fpqc. Denote the resulting site by (Sch/S)fpqc. The fpqc site is subcanonical. This is a non-trivial

result, and is sometimes called descent of morphisms. A proof can be found in [11, Tag 022H].

If we want, we can impose a finiteness constraint on the fpqc topology. That is, we can choose

to declare {Ui → U }i∈I to be an fpqc covering if the map
⊔
i Ui → U is fpqc, and in addition the

indexing set I is finite. Whether we do this or not won’t make a difference anywhere until all the

way in Lemma 4.2.6, where finiteness is needed and will be imposed from that point on.

Having defined a sheaf over an arbitrary site, we turn to stacks now. Essentially, a stack is

almost the same as a sheaf, except it takes values in categories rather than in sets. There are two

well-known ways of formalizing this, namely via fibred categories and via pseudo-functors. We

briefly consider the definitions, but we assume that the reader is familiar with both approaches,

and we will swap between one and the other wherever it is convenient. More details can be found

in [14].

Given a category C, a (contravariant) pseudo-functor F on C consists of the following data.

� For every object U in C, a category F (U );

� for every morphism f : U → V , a functor f ∗ : F (V )→ F (U );

� for every object U , a natural isomorphism of functors εU : Id∗U
∼
−→ IdF (U );

� for any two composable morphisms f : U → V and g : V → W , a natural isomorphism

αf,g : f ∗ ◦ g∗ ∼−→ (g ◦ f )∗.

We ask for the natural isomorphisms α’s to satisfy the cocycle conditions, and to be compatible

with the ε’s. More precisely, for composable arrows U f
−→ V

g
−→ W

h
−→ X and η ∈ F (X ), we ask for

f ∗g∗h∗η (g ◦ f )∗h∗η

f ∗(h ◦ g)∗η (h ◦ g ◦ f )∗η

αf,g(h∗η)

f ∗αg,h (η) αg◦f,h (η)

αf,h◦g(η)

to commute, and for all morphisms f : U → V and elements η ∈ F (V ), we ask for the equalities

αIdU ,f (η) = εU (f ∗η) and αf,IdV (η) = f ∗εV (η).

Fix a category C. By a category over C we mean a category F together with a functor

pF : F → C. Rather than writing pF(f ) = c for objects f in C and c in C, we use the shorthand

f 7→ c. A morphism φ : f → g of F will be called a Cartesian morphism if for any solid diagram
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h

f g

pFh

c d

∃!

the dashed arrow can be made to exist and commute with everything else; in particular, the image

of the dashed arrow under pF should be the arrow pFh → c that we started out with. Moreover,

the dashed arrow should be unique. We also say that f is a pullback of g along c.

A fibred category is now a category F over C such that, given a morphism c → d in C and an

object g such that g 7→ d, one can always find a Cartesian morphism f → g making the diagram

f g

c d

commute. In other words, we can always pull back objects of F along any morphism of C. Given

a category F fibred over C. Take an object c in C. The fibre F(c) is the subcategory of C whose

objects are objects of F that are sent to c under pF, and whose arrows are those arrows of F that

are sent to Idc under pF.

Lemma 2.2.2. Let F be a fibred category over C. If all the fibres F(c) are groupoids rather

than arbitrary categories, or for short, if F is fibred in groupoids, then Cartesian morphisms are

unique in the sense that, for any morphism in C there exists a unique Cartesian morphism in C

lying above it. Conversely, if Cartesian morphisms are unique in the aforementioned sense, then

the F(c) are groupoids. �

A cleavage of a fibred category F → C is a class of Cartesian morphism in F such that for

each arrow c → d in C and for each object η ∈ F(d) there is a unique Cartesian morphism in said

cleavage which provides a lift. By the axiom of choice, every fibred category has a cleavage. As the

above lemma tells us, if the fibred category is fibred in groupoids, then there is only one cleavage,

and the notion becomes irrelevant.

Lemma 2.2.3. Given a fibred category F over C, with a fixed choice of cleavage, there exists

a pseudo-functor on C which sends an object c to the fibre F(c). Conversely, every pseudo-functor

gives rise to a fibred category with a cleavage. �

A morphism of fibred categories F : F → G is a functor F from F to G which commutes

(not just up to natural isomorphism) with the projections pF and pG, and which sends Cartesian
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morphism to Cartesian morphism. Similarly one can define morphisms of pseudo-functors, but

we will omit this.

From this point on we assume that C is equipped with a Grothendieck topology. Let F be a

fibred category over a site C, and fix a cleavage for F. Consider a covering U = {σi : Ui → U } of an

object U in C. Denote by Uij the object Ui ×U Uj, and similarly write Uijk instead of Ui ×U Uj ×U Uk.

For fixed i and j, we use the following notation to denote the relevant maps:

Uij Uj

Uj U

p2

p1 σj

σi

Notice that the notation is not in one-to-one correspondence with the maps, as we use the nota-

tion p1 and p2 regardless of the choice of i and j. Context should make it clear which map we

mean. Similarly, for fixed i, j and k, we shall write p12, p13, and p23 for the maps in the diagram

Uijk Ujk

Uij Uj

Uik Uk

Ui c

p23

p12

p13

σj

σk

σi

We now have the language to make the aforementioned notion of ‘local data’ precise. We define

descent data at U to consist of the following. For all i, a choice of object ξi in the fibre F(Ui);

for all i and j, a choice of isomorphism φij from the pullback p∗1ξj to the pullback p∗2ξi — recall

here that the pullbacks are determined by our fixed choice of cleavage. The isomorphisms must

moreover satisfy the following cocycle conditions: for all i, j and k, we have p∗13φik = p∗12φij ◦p
∗
23φjk.

A morphism of descent data (ξi , φij) → (ηi , ψij) to be a collection of arrows αi : ξi → ηi in F(Ui),

such that for every pair i, j, the diagram

p∗2ξj p∗2ηj

p∗1 p∗1ηi

p∗2αj

φij ψij

p∗1αi

commutes. This turns the collection of descent data at an object c into a category, which we

denote by F(U).

For each object ξ ∈ F(U ), there is a natural choice of descent data for ξ , simply by letting the

objects ξ in F(Ui) be σ∗i ξi . The desired properties are then in fact trivially satisfied. Similarly if
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we have a morphism ξ → η in F(U ), then we get arrows on the canonical choices of descent data.

This yields a functor F(U ) → F(U). With these definitions in place, we say F is a stack over C if

the functor F(U ) → F(U) is an equivalence of categories. We point out that the notion of a stack

is well-defined in the sense that it does not depend on the choice of cleavage.

Example 2.2.4. In the case that C is subcanonical, a representable functor hX is a sheaf, so

that it may also be viewed as a stack, which we denote by C/X or even simply by X if no confusion

can arise, and which we refer to as a representable stack.

There are two general constructions that we will need later on: stackification and 2-fibre prod-

ucts. They are really just stack-theoretic analogues of sheafification and ordinary fibre products,

respectively, so no new ideas are going to come up until the end of this section.

We first deal with stackification. We just state the general claim, referring the reader to [11,

Tag 02ZN] for more details. Given a fibred category F over a site C, there is always a stack F′

over C, along with a morphism of fibred categories F → F′, such that two properties hold.

� The first property is like a descent condition for objects. For any element c in the fibre

F′(U ), there exists a covering {hi : Ui → U } such that h∗i c is in the essential image of the

functor F → F′.

� The second property is a descent condition for morphisms. Take two objects c and c′

in a fibre F(U ). For any object h : V → U , we can consider HomF(h∗c, h∗c′), which

we may interpret as a presheaf over C/U . The morphism F → F′ yield natural maps

HomF(h∗c, h∗c′)→ HomF′(h∗c, h∗c′), and we require this to be precisely the sheafification

of our presheaf.

Next, we deal with (2-)fibre products. F ×H G. Consider two morphisms of fibred categories

f : F → H and g : G→ H over a fixed category C. We aim to construct the 2-fibre product F×H G.

As fibred categories form a 2-category, it is natural to relax any strict commutativity requirements,

and replace them by commutativity up to some natural isomorphism. The description goes as

follows. Its objects are all quadruples (U, x, y, F ) with U ∈ C, x ∈ F(U ), y ∈ G(U ), and with F

an isomorphism f (x) → g(y) in H(U ). The morphisms (U, x, y, F ) → (U ′, x ′, y′, F ′) are given by a

morphism α : x → x ′, a morphism � : y→ y′, so that pF(α) = pG(�), and so that

f (x) g(y)

f (x ′) g(y′)

F

f (α) g(�)

F ′

commutes in H(U ). The resulting category satisfies the universal property that defines a 2-limit,

but we omit these technicalities.
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Lemma 2.2.5. Let the notation be as above. If F, G and H are fibred in groupoids, then so

is the 2-fibre product F ×H G. �

Proof: A morphism in a fibre (F ×H G)(U ) consists of a morphism α between objects in F(U ),

and a morphism � between objects in G(U ), satisfying some properties. As F(U ) and G(U ) are

groupoids, α and � will be invertible. This gives us an obvious choice for an inverse for the

morphism we started out with; the verification that it is indeed an inverse is straightforward. �

Assume now that C is a site, and suppose that F, G and H are stacks over C rather than just

fibred categories. The above lemma tells us that the fibre product is again fibred in groupoids.

If the fibre product does not satisfy the descent condition that defines a stack, we might need to

apply a stackification procedure to get the appropriate 2-limit in the 2-category of stacks over C.

But as it turns out, this is not needed.

Lemma 2.2.6. Let C be a site, and let f : F → H and g : G → H be two morphisms of stacks

over C. Then the 2-fibre product F ×H G as defined above is again a stack. �

Proof sketch: The proof is straightforward but tedious. Take a covering U = {hi : Ui → U } in C,

and start with a descent datum in F ×H G relative to U. When writing out the definition, find that

this descent datum gives rise to descent data for F and G. As these are assumed to be stacks,

these descent data give rise to unique (up to isomorphism) elements x ∈ F(U ) and y ∈ G(U ) that

are compatible with the descent data.

Locally, there exists from f (x) to g(y), and since H too is a stack, this glues to a unique

isomorphism f (x)→ g(y). The elements x and y, along with this isomorphism, comprise the data

needed to define the desired element in (F ×H G)(U ) that corresponds to the descent datum we

started with. �

2.3 Algebraic stacks

We are now ready to introduce algebraic stacks. Much of our presentation will be based on

various sections in [11], and one can find much more information there if needed.

Let C be a subcanonical site, and let f : F → G be a morphism of stacks over C. We say f

is (relatively) representable if, for all representable stacks C/X and for all morphisms of stacks

C/X → G, the fibre product F ×G C/X is again representable, and, as automatically follows by the

Yoneda lemma, the morphism F×GC/X → C/X comes from a morphism between the representing

objects. More generally, if T is a property that certain stacks over C satisfy, we can say f is

representable by T if for all morphisms C/X → G, the fibre product F ×G C/X is of type T.

We can use relative representability to define properties for morphisms of stacks. If P is a

property that certain morphisms in C satisfy and which is preserved under base change (so as
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to prevent pathologies), a morphism F → G of stacks can be said to satisfy P if it is relatively

representable, and every base-changed morphism F ×G C/X satisfies P.

We are now ready for the most important definitions in this sections. For us, an algebraic

stack will be a stack fibred in groupoids over Schfpqc. An Adams stack is an algebraic stack such

that the following two properties hold.

� There exists an affine scheme X , along with an fpqc morphism X → X, also called an atlas

of X (that is, the map X → X is relatively representable by fpqc morphisms of schemes);

� the diagonal morphism X→ X × X is affine.

A morphism of algebraic stacks and a morphism of Adams stacks are defined in the same way

as a morphism of general stacks.

A few remarks are in order. First, our definition of algebraic stack is very different from the

one that can be found in the literature. What we call an Adams stack is much closer to what

algebraic geometers would call an algebraic stack, except that we do not impose any finiteness

condition on either the diagonal or the atlas.

Second, from this point on, all stacks that we will be interested in are, at least, algebraic

stacks. We will therefore be a little bit sloppy, and write ‘stack’ when it should really be ‘algebraic

stack’.

Finally, we have defined our stacks over Sch, but in practice it suffices to consider the stack

over the subcategory Aff of affine schemes. Indeed, as stacks satisfy the descent condition, we

need only describe the data locally. We will make use of this quite often, and implicitly identify

the fibred category defining an algebraic stack with the subcategory over Aff.

Lemma 2.3.1. Let F be an algebraic stack. Then for any ring R, elements of the fibre

F(SpecR) correspond to morphisms of stacks SpecR → F. �

In practice, we won’t distinguish between an element of F(SpecR) and its corresponding

morphism SpecR → F. It is perhaps helpful to note that, if F is a representable stack, the

correspondence is precisely the one you’d expect.

Proof sketch of Lemma 2.3.1: Start with an element f ∈ F(SpecR). We describe the corre-

sponding morphism of stacks f : SpecR → F. To do so, for any scheme X we need to describe

a functor fX : hX (R) → F(X ) and for any morphism X → X ′, there should be a natural transfor-

mation fX → fX ′ . We describe fX as follows. Given α ∈ hX (R) corresponding to a map of schemes

α : X → SpecR, let fX (α) be the element α∗(f ) in F, where α∗ is the (unique) Cartesian morphism

in F over α. Conversely, given a morphism f : SpecR → F, our element f ∈ F(SpecR) can be

retrieved by evaluating f at the element of hR(R) representing the identity map. �
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It is about time that we talk about examples of algebraic stacks. There are many examples

of stacks that we do not have the time to consider, such as the moduli stack of elliptic curves or

Picard stacks. The reader can find many examples in [11, Ch. 89] and elsewhere.

Example 2.3.2. Quotient stacks are an important family of examples of algebraic stacks. We

follow [11, Tag 04UI]. Let (U, R) be a groupoid in the category of schemes over a base scheme S.

Define the quotient stack [U/R] to be the stackification of the pseudo-functor Sch/S → Grpd

sending an S-scheme X to the groupoid
(

Hom(X, U ),Hom(X, R)
)
.

There are three important special cases that we will care about. The first example is when U

and R are affine schemes over the base scheme S = SpecZ, thus forming a Hopf algebroid. The

resulting quotient stack turns out to be an Adams stack. We discuss this in detail in Section 2.5.

The second special case goes as follows. Let G be a group S-scheme acting on an S-scheme X .

The pair (X,G × X ) has the structure of a groupoid object in the category of schemes (but it might

be difficult to see what the maps should be — see [11, Tag 0444]). The resulting quotient stack is

denoted [X/G]. In [11, Tag 04UV], it is shown that this stack admits the more familiar description

involving G-torsors over X .

The third special case is really a subcase of the situation above. Suppose X is the scheme S,

and the action of G on S is trivial. The resulting quotient stack [S/G] is also called the classifying

stack and is denoted by BG. Unravelling the definition, it may simply be interpreted as the stack

of G-torsors over S.

2.4 Quasi-coherent sheaves and substacks

In this section we define quasi-coherent sheaves over algebraic stacks. There are several

equivalent ways to approach this, and we pick a particular approach that will simplify future

considerations. We begin by defining a particular example of an algebraic stack.

Example 2.4.1. Let C be the category Sch of schemes endowed with the Zariski topology

(see Example 2.2.1), which takes as its coverings the topological open coverings of the underlying

spaces. We take F to be the category QCoh of all pairs (X,F ) where X is a scheme and F

is a quasi-coherent sheaf over X . The functor QCoh → Sch is given by the obvious projection

map. One can verify that this construction defines a stack over the Zariski site SchZar fibred in

groupoids. Remarkably, the category QCoh defines a stack not only over SchZar, but even over

Schfpqc. This is called descent of quasi-coherent sheaves. A proof can be found in [11, Tag 023R]

or [14, Thm. 4.23].

Let F be an algebraic stack. A quasi-coherent sheaf (or just sheaf for short if quasi-coherence

is clear from context) on F is just a morphism F → QCoh. The reader can check that, in the case

that F is a representable stack, this coincides with the usual definition. We also point out that,
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by descent, it suffices to describe the morphism F → QCoh as stacks over Aff. A morphism of

quasi-coherent sheaves is simply a natural transformation between the two functors F → QCoh

defining the sheaves. This allows us to define a category QCoh(F) of quasi-coherent sheaves over

our algebraic stack. As with schemes, we have the following result.

Lemma 2.4.2. For any algebraic stack F, the category QCoh(F) of quasi-coherent sheaves

on F forms an abelian category. �

Proof: The idea is reasonably straightforward. Given a natural transformation f between two

functors G ,H : F → QCoh we can define a kernel Ker f : F → QCoh of this natural transformation

by sending an object c above a scheme X to the kernel of the map of sheaves f (c) : G (c) →H (c).

Notice that, in the case where F is a representable stack, this definition is sensible because

pullbacks commute with taking kernels. Defining cokernels works in the same way. We leave it

to the most enthusiastic of readers to verify the remaining tedious nonsense. �

In a similar way, one can define coherent sheaves over stacks to be morphisms to the stack

Coh of coherent sheaves. The above proof carries over to show that the subcategory Coh(F) of

coherent sheaves again forms an abelian category. For the rest of this section, we will focus on

quasi-coherent sheaves, but much of the discussion also applies to coherent sheaves.

Quasi-coherent sheaves can be tensored, pulled back and, in some cases, pushed forward.

Pullbacks are defined quite easily. If f : F → G is a morphism of algebraic stacks, then a morphism

G → QCoh can be composed with f to yield a sheaf on F, which we refer to as the pullback. The

definition of a tensor product of two sheaves F → QCoh is equally straightforward.

Now what about pushforwards? We do not expect them to exist always, as even in the case

of schemes, pushforwards of quasi-coherent modules need not be quasi-coherent anymore. It

suffices for us to describe pushforwards under the additional assumption that f is affine — that

is, f is relatively representable by affine morphisms of schemes. We begin with a quasi-coherent

sheaf F → QCoh. We wish to describe a morphism G → QCoh. It suffices to describe this

morphism affine-locally. So take a morphism SpecR → G. We wish to functorially associate an

R-module MR to this morphism. As f is affine, the morphism F×G SpecR → SpecR is affine, hence

the pullback is in fact an affine scheme, say SpecS. Associated to the morphism SpecS → F is

an S-module MS. We now define MR to be the pushforward of MS along the map SpecS → SpecR;

that is, it is the module whose underlying set is MS, but whose R-module structure is induced

by the ring map R → S. This description gives rise to a morphism G → QCoh, which we call the

pushforward sheaf.

If quasi-coherent sheaves on algebraic stacks make sense, then in particular, so do quasi-

coherent ideal sheaves, and hence also closed substacks. The definition is precisely as one would

expect. Let F be a stack. A quasi-coherent sheaf of ideals on F is a quasi-coherent sheaf
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I : F → QCoh sending every object in F above X to a sheaf of ideals on X . Given a quasi-coherent

sheaf I on F, we define the closed substack V (I ) of F to be the full subcategory of F consisting

only of those objects of F that get sent to the zero ideal by the morphism F → QCoh. By descent

of sheaves this indeed defines a stack. The inclusion of the closed substack into F is relatively

representable by closed immersions, and in fact this characterizes closed substacks.

Let I be a quasi-coherent sheaf of ideals on F. We would like to define what it means for I

to be principal. We have to be somewhat careful here, as it is possible for an ideal sheaf on an

affine scheme to be locally principal, but not globally so. (See [11, Tag 0CBZ] for an example.)

We shall say I is principal if there exists an fpqc covering SpecA → F from an affine scheme

such that the pullback of I to SpecA is cut out by a single element f ∈ A. Of course, it is not

guaranteed that an fpqc covering SpecA → F exists in the first place, but in all situations where

we need principal ideal sheaves, this will be the case.

Let F be a stack, with quasi-coherent ideal sheaf I . We wish to define the open complement

of the closed substack V (I ) in some way. Here we should be a bit careful: it is tempting to just

take the complement of the subcategory V (I ) defined within the fibred category F, but this is

false. Indeed, the functor of points hU of an open complement U of a closed subscheme Z ⊆ X

is not the complement of the functor of points hZ within hX . To motivate the correct definition,

we investigate what the functor hU should be. The following result is elementary and added for

completeness.

Lemma 2.4.3. Take an affine scheme SpecR, and let I be an ideal of R defining a closed

subscheme SpecR/I. We claim that the morphisms SpecA → SpecR factoring through the open

complement of SpecR/I are precisely those ring maps f : R → A such that the ideal generated by

the image f (I) is all of A. �

Proof: Let’s first suppose that the ring map f satisfies the property that f (I) generates A. Take

a point of SpecA corresponding to a prime ideal p of A. If the image of this point were in SpecR/I,

it would imply that f −1(p) would contain I, which in turn would tell us that f (I) ⊆ f
(
f −1(p)

)
⊆ p — a

contradiction. Now assume that the ideal generated by f (I) is not all of A. An argument invoking

Zorn’s lemma shows f (I) is contained within some maximal ideal, say m. The pre-image f −1(m) is

an ideal of R containing I, hence the map of spectra corresponding to f cannot factor through the

open complement. �

We use the above lemma to motivate the definition of an open complement of a closed

substack V (I ) of some stack F. For simplicity, view our stacks as stacks fibred over Aff. Define

the open complement as the full subcategory of F consisting of those maps SpecR → F such that

the R-ideal we get by applying the morphism I : F → QCoh is all of R.
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Having defined closed and open substacks, there’s one more flavour of substack that we’d

like to consider. Recall that we can define the formal completion of a closed subscheme as a

certain formal scheme that, intuitively, consists of the closed subscheme along with information

about the neighbourhood of the subscheme within the ambient scheme. This construction has

a generalization to algebraic stacks. We quickly review the classical construction before writing

down our generalization to stacks.

Take an affine scheme SpecR, with a closed subscheme Z = Z1 defined by an ideal I of R. Let Z2

be the closed subscheme defined by the ideal I2. Its underlying points are the same of Z , but the

nilpotence of the quotient R/I2 yields some infinitesimal information about the neighbourhood of Z

within SpecR. We go on and define Z3 by the ideal I3. The ring R/I3 contains yet more nilpotence,

which may be thought of as yet more information about the neighbourhood. Continuing in this

way, the formal completion may be thought of as the limit of this procedure.

There are two different ways of making this precise. First, we may define the completion

of R to be the limit R̂ over the sequence of quotient maps · · · → R/I3 → R/I2 → R/I, and we may

consider the spectrum Spec R̂ of this completion. Alternatively, we may consider the functors of

points hZi : Ring → Set and define the formal completion to be the colimit along the sequence of

functors hZ1 → hZ2 → · · · . We denote the resulting functor of points by Spf R̂. By [11, Tag 0AI2],

this functor is an fpqc sheaf, so that we may fit formal schemes within our framework of algebraic

stacks.

The second construction is more amenable to a generalization to algebraic stacks than the

first one. This is because it is not clear at all how to view the completion construction of a ring

from a functorial perspective. So let F be an algebraic stack with closed substack V (I ) defined by

an ideal sheaf I . Then the formal completion F̂ is the full subcategory of F consisting of those

objects that get sent to a locally nilpotent ideal by the morphism F → QCoh. By [11, Tag 0BPF],

this indeed defines an algebraic stack.

2.5 Flat Hopf algebroids and Adams stacks

Recall that Hopf algebroids are groupoid objects in the category of affine schemes, and so they

give rise to a functor Ring→ Grpd, which is a fortiori a pseudo-functor. Similarly, stacks over the

category of schemes may be defined as pseudo-functors Ring → Grpd satisfying a descent condi-

tion, and algebraic stacks are then required to satisfy some additional properties. By comparing

the definitions, it seems reasonable to expect the two notions to be comparable. This is indeed

the case, and we’ll expand upon this now.

Let M be an Adams stack, and let SpecA →M be an fpqc covering of M. Consider the 2-fibre

product SpecA ×M SpecA. This is again an affine scheme. One way to see this is by noting that it

also arises as the 2-fibre product of the diagram
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SpecA ×M SpecA SpecA × SpecA

M M ×M

and recalling that the diagonal map on M was affine by definition. Let us write Spec Γ for the fibre

product for suggestive reasons. The pair (SpecA,Spec Γ) forms a flat Hopf algebroid. The source

and target maps Spec Γ→ SpecA are the structure maps of the fibre product, and these maps are

flat as flatness of the map SpecA →M is preserved by base change. The unit map SpecA → Spec Γ

is the diagonal map. The inversion map Spec Γ→ Spec Γ is obtained by swapping the components

of the product SpecA ×M SpecA.

Finally, we have the composition Spec Γ ×A Spec Γ → Spec Γ. It can be found as follows. We

begin by writing down the diagram

Spec Γ ×A Spec Γ Spec Γ SpecA

Spec Γ SpecA

SpecA

The top horizontal maps and the left vertical maps from Spec Γ ×A Spec Γ to SpecA naturally yield

a map to Spec Γ, which is the one we declare to be the composition. It remains to be shown that

all the axioms defining a Hopf algebroid are satisfied. All these verifications are entirely formal,

and we omit them.

Let us now start out with a flat Hopf algebroid (SpecA,Spec Γ). As mentioned before, it gives

rise to a pseudo-functor, and hence to a category fibred over Aff. We define M(A,Γ) to be the

algebraic stack obtained by stackifying our fibred category with respect to the fpqc topology. As

it turns out, this is an Adams stack, in precisely the way one would expect. There is an obvious

map SpecA → M(A,Γ), and by flatness over our Hopf algebroid, this becomes an fpqc covering;

moreover, taking the fibre product over the diagram SpecA →M(A,Γ) ← SpecA yields Spec Γ.

In fact, one can use this approach to prove something stronger. The category of Adams stacks

with a fixed choice of fpqc atlas has the structure of a 2-category, as does the category of flat

Hopf algebroids. The association above defines an equivalence of 2-categories, where equivalence

should be interpreted in an appropriate 2-categorical sense. This can be found in [8, Section 3].

Example 2.5.1. Recall from Example 2.1.5 that certain ring spectra, which we called flat

ring spectra, give rise to a Hopf algebroid. That is, if E is a flat ring spectrum, then (π∗E, Ẽ∗E) has

the structure of a Hopf algebroid. We repeat here that, in order for our constructions to fit within

the framework of algebraic geometry, our rings need to be commutative, so the ring spectrum also
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needs to be evenly graded. If this is the case, then our correspondence tells us that E gives rise to

an Adams stack, which we will denote by ME.

Comodules over Hopf algebroids have a natural interpretation in our stack-theoretic language.

They are precisely quasi-coherent sheaves over the corresponding algebraic stacks. The proof is

really just an application of fpqc descent of quasi-coherent sheaves (see Lemma 4.2.9 for details).

For the sake of completeness, we’ll sketch how to pass from one realm to the other.

Start with a quasi-coherent sheaf F on an Adams stack M(A,Γ). The pullback of F along

the atlas SpecA → M(A,Γ) gives rise to an A-module. This A-module is the underlying module

structure of our comodule, and we can find the coaction by considering the pullback of F along

the two maps Spec Γ → M(A,Γ). Conversely, if we start out with a comodule M and we’d like to

find F , the underlying A-module tells us what the pullback of F along the map SpecA → M(A,Γ)

should be, while the comodule structure gives us the desired descent data on pullbacks and triple

overlaps. For this, too, more details can be found at [8, Section 3].
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Chapter 3

The moduli stack of formal groups

The moduli stack of formal groups is the algebraic stack classifying formal group laws and

isomorphisms between them. We start out in this chapter by giving several constructions of this

moduli stack of formal groups, before proceeding to study some of its properties. We’ll find, among

other things, that the height of formal group laws gives rise to a filtration by substacks of this

moduli stack, and the various layers of this filtration will end up being easier in nature than the

entire stack.

3.1 Constructions of the stack of formal groups

The moduli stack of formal groups can be constructed in several ways, all of which will end

up being equivalent. We spend a bit of time giving the various definitions.

We recall from Section A.2 that, for any ring R, the formal group laws over R correspond to

ring maps Hom(L, R), and the isomorphisms between any two formal group laws over R correspond

to ring maps Hom(W,R). This turns the pair (Spec L,SpecW ) into a Hopf algebroid. Via the

correspondence in Section 2.5, this gives rise to an Adams stack, denoted MFG, and called the

moduli stack of formal groups. More explicitly, the moduli stack of formal groups is the stack

associated to the pseudofunctor Ring → Grpd sending a ring R to the groupoid of formal group

laws over R, along with their isomorphisms.

The stackification in this definition is not redundant. Let R be a ring with non-trivial Picard

group, and take a non-trivial line bundle L on SpecR — for concreteness, take R to be a Dedekind

domain and L a fractional ideal. Let {Ui} be a trivializing cover. Assign, to each Ui , the additive

formal group law, and glue this data using the gluing data of L . The resulting assignment does

not come from a single formal group law over R. One way to check this directly is via [5, Prop. 7

of Lecture 11].
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The stack of formal groups can also be constructed as a certain quotient stack. Start with

the Lazard ring L. Write G = SpecZ[a±1
0 , a1, . . .]. Then, for any ring R, Hom(SpecR,G) is naturally

isomorphic to {h(t) ∈ R[[t]] : h′(0) ∈ R∗}, which has a group structure by composition of power

series, thus turning G into an affine group scheme. For any R, G(R) acts on L(R) = FGL(R) via

the map
(
h(t), f (x, y)

)
7→ h−1(f (h(x), h(y))

)
. This yields an action of the group scheme G on Spec L,

and we may define the quotient stack [Spec L/G] as we did in Example 2.3.2.

There is a variation of the stack of formal groups that is worth mentioning. Recall that

an isomorphism of formal group laws h : f (x, y) → g(x, y) is defined by a certain formal power

series h(t), where h′(0) is necessarily a unit. If it equals 1, we said that h is a strict. We write W s

for the ring representing strict isomorphisms. The pair (L,W s) is another Hopf algebroid whose

associated stack is denoted Ms
FG. There’s a morphism of stacks from Ms

FG to MFG.

The following slightly different perspective on the above definition is perhaps more enlightening

to some. Recall from Example 2.1.5 that we associated Hopf algebroids, and hence Adams stacks,

to flat ring spectra. Also recall from Theorem 1.3.9 that π∗MU is isomorphic to the Lazard ring.

Perhaps, then, (π∗MU, M̃U∗MU) forms a Hopf algebroid that is similar to some stack of formal

groups. This is indeed the case: by [13, Thm. 17.16], M̃U∗MU � L[a2, a3, . . .], and there are

indeed structure maps on the pair (π∗MU, M̃U∗MU) that turn it into the same Hopf algebroid as

the one considered above. Thus, Ms
FG is precisely the stack associated to the spectrum MU. For

any space X , M̃U∗(X ) is a comodule over the Hopf algebroid, so that X gives rise to a quasi-coherent

sheaf over Ms
FG, which we denote F s

X .

The non-strict version also comes from a homology theory, and in fact, it’s almost the same

as MU. Let us define MUP to be the infinite wedge sum
∨
n∈Z Σ2nMU. Notice that the zero-th

homotopy group is πS
0(MUP) =

⊕
n∈Z π

S
2n(MU) = πS

∗ (MU) = L, where the last step uses the fact

that MU is evenly graded. Similarly, we have

M̃UP0(MUP) = [S,MUP ∧MUP]

=

[
S,

∨
n∈Z

∨
m∈Z

Σ2n+2m(MU ∧MU)
]

=
⊕
n∈Z

M̃U∗(MU)

= M̃U∗(MU)[a±1
1 ]

= L[a±1
1 , a2, a3, . . .] = W

This turns the zero-th graded part of πS
∗ (MUP) and of M̃UP∗(MUP) into an ungraded Hopf algebroid

that is precisely (L,W ). The algebraic stack associated to it must be MFG. Moreover, for any

space X , in the same way that MUP∗(X ) would be a comodule over
(
πS
∗ (MUP), M̃UP∗(MUP)

)
, so

is the zero-th graded part a comodule over
(
πS

0(MUP), M̃UP0(MUP)
)

= (L,W ). In this way, every

space gives rise to a quasi-coherent sheaf over MFG, denoted FX .
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The above discussion tells us that the difference between MFG and Ms
FG is essentially just

a grading issue — something which, in hindsight, is already seen from the definitions. One

can always associate, to a given evenly graded Hopf algebroid (A∗,Γ∗), an ungraded Hopf alge-

broid
(
A,Γ[u±1]

)
, where the grading is implicitly being hidden within the variable u. As a special

case, applying this to (L,W s), viewed as a graded Hopf algebroid, we get the ungraded Hopf al-

gebroid (L,W ). At no point will the grading issue cause significant issues, but it is nonetheless

profoundly annoying at times.

Finally, a word of caution. It is tempting to mentally picture MFG as being very similar to

Spec L; indeed, any formal group law over a ring R yields both a map SpecR → Spec L and a map

SpecR → MFG. This is a misleading way of thinking. Take two formal group laws, one over a

ring R and the other over R′. Then the pullback along the maps SpecR → Spec L ← SpecR′ is

given by Spec(R ⊗L R′); but if we replace Spec L by MFG, we get something completely different.

Lemma 3.1.1. Take two formal group laws over R and R′. The pullback along the maps

SpecR →MFG ← SpecR′ is given by Spec(R⊗LW ⊗L R′). Here we interpret W as a bimodule over L

via the source and target maps L → W . �

Proof: Let’s view the pullback SpecR ×MFG SpecR′ as a fibred category. We unravel the

definition of a 2-fibre product. An object of this pullback above a scheme SpecA (or, if you wish,

a morphism SpecA → SpecR ×MFG SpecR′) should consist of a morphism SpecA → SpecR, a

morphism SpecA → SpecR′, and an isomorphism between the two resulting formal group laws

over A. Essentially by definition, this is just a morphism SpecA → Spec(R ⊗L W ⊗L R′). This

would prove the result, but we need to check if there aren’t any non-trivial automorphisms in

SpecR ×MFG SpecR′. Looking at the definition again, any such morphism should involve non-

trivial morphisms in the fibred categories defining SpecR and SpecR′, but as SpecR and SpecR′

are discrete, there are none. �

The moduli stack of formal groups is not a nice algebraic stack by algebro-geometric standards.

It does not have a presentation by a scheme locally of finite type, it is not separated, and it does not

admit a smooth atlas — at least, not a priori so. It is, however, the limit of ‘nice’ algebraic stacks,

namely by algebraic stacks of truncated formal group laws. These truncated formal group laws

carry the rather unappealing name of ‘k-buds’, where k refers to the point at which we truncate.

More precisely, a k-bud is a polynomial f (x, y) in R[[x, y]]/(x, y)k+1 such that, modulo (x, y)k+1,

f (x, y) satisfies the usual associativity, unitality, and commutativity properties. An isomor-

phism of k-buds h : f (x, y) → g(x, y) is described by an expression h(t) ∈ R[[t]]/(tk+1) such

that, modulo (tk+1), we have the usual identity f
(
h(x), h(y)

)
= h

(
g(x, y)

)
. They assemble into

a stack, called the moduli stack of k-buds, which we denote by MFG〈k〉. Results analogous

to Theorem A.2.2 and Lemma A.2.3 carry over to this context, which shows that MFG〈k〉 is the
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Adams stack associated to a Hopf algebroid (L〈k〉,W 〈k〉), where L〈k〉 = SpecZ[x1, . . . , xk−1] and

W 〈k〉 = L〈k〉[t±1
1 , t2, . . . , tk].

In the same way that formal group laws are a ‘limit’ of k-buds, so does the moduli stack of

formal groups turn out to be a ‘limit’ of the various stacks of k-buds. More precisely, we have the

following result, which we can find as [4, Thm. 3.20]:

Lemma 3.1.2. The natural maps MFG →MFG〈k〉, obtained by truncating formal group laws,

give rise to an equivalence of stacks MFG → holimMFG〈k〉. �

In the next sections, we take a look at the height filtration of MFG, and at the geometric

properties of the various layers of the filtration. The definition of height carries over to k-buds

(although being of a certain height n requires the k in ‘k-bud’ to be sufficiently large). Conse-

quently, virtually everything we do in the next section can also be done in the context of k-buds.

For now, we’ll omit the details of this, but it will become crucial in Chapter 4. We’ll come back to

this in Section 4.3.

3.2 The height filtration

In Section A.3 we introduced an invariant associated to formal group laws called the height.

By restricting attention to formal group laws of a fixed height, we obtain substacks of the moduli

stack of formal groups, which we can study one by one. This will be the most important aim of

this section. The contents are based on [4, Ch. 5 and 6].

Throughout this section, we work at a fixed prime p. So, when we say “MFG”, we really mean

MFG × SpecZ(p). And when we say “height” — a term which implicitly invokes a choice of a prime

— we choose the same p. Also, we remark right away that our discussion also works for the

stack Ms
FG with strict isomorphisms, but we omit this as it involves nothing new.

For every positive integer n, we denote by M≥nFG the moduli stack of formal groups of height ≥ n,

localized at p. That is, we take the functor sending a ring R to the groupoid of formal group laws

of height ≥ n along with their isomorphisms, and stackify. As with MFG, the reader can verify that

we can describe M≥nFG as an Adams stack associated to a Hopf algebroid. It is the Hopf algebroid

(A,Γ), where A is the ring L(p)/(p, v1, . . . , vn−1), and Γ is the ring A[t±1
0 , t1, . . .].

Lemma 3.2.1. For every positive integer n, the algebraic stack M≥nFG is a closed substack of

the stack MFG of formal groups. �

Proof: It suffices to verify that M≥nFG is a closed substack of M≥n−1
FG , where M≥0

FG is just MFG.

In order to verify this, we need to show that M≥nFG is defined by a quasi-coherent ideal sheaf over

M≥n−1
FG . By descent of sheaves, it suffices to describe the ideal sheaf as descent data on the fpqc

covering Spec L(p)/(p, v1, . . . , vn−1) → M≥nFG. We take the ideal (vn) ∈ L(p)/(p, v1, . . . , vn−1), which
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may be pulled back to W(p) along the two structure maps srce, trgt : L(p) → W(p). It remains to

be shown that these two pullbacks admit a W(p)-module isomorphism satisfying cocycle condi-

tions. The isomorphism is obtained by descending the structure map inv : W(p) → W(p) to a map

W(p)/(p, v1, . . . , vn−1)→ W(p)/(p, v1, . . . , vn−1), which can be done thanks to Lemma A.3.3. �

The closed substacks we have just defined turn out to be fundamental to the structure of the

stack of formal groups. In fact, this so-called height filtration is the unique filtration on MFG, as

is evidenced by the following result, found in [4, Thm. 5.13].

Theorem 3.2.2. The substacks M≥nFG are reduced. Moreover, any reduced closed substack

of MFG is either MFG itself or M≥nFG for some n. �

Let us write M<n
FG for the open complement of M≥nFG inside MFG. In the language of Section A.3,

it is precisely the moduli stack of formal groups of height < n. As emphasized in the definition

of open complements, introduced in Section 2.4, this does not mean we take the complementary

subcategory of M≥nFG.

Lemma 3.2.3. For all n > 0, the open substack M<n+1
FG admits an fpqc covering by the affine

scheme SpecZ(p)[v1, . . . , v±1
n ]. �

Proof: We define the map SpecZ(p)[v1, . . . , v±1
n ] → MFG to be the map corresponding to

the formal group law over Z(p)[v1, . . . , v±1
n ] that is defined by the map L(p) � Z(p)[t1, t2, . . .] →

Z(p)[v1, . . . , v±1
n ] sending tpi−1 to vi for i = 1, . . . , n and sending the other tj to 0 — but see the

discussion above Lemma 3.3.11, where we ‘revisit’ this definition. By Corollary A.3.10, we see

that this formal group law is indeed of height < n+1. Both the definition we pick and the revisited

definition are flat and affine. The former property follows from Theorem 3.3.4; as for the latter,

it is in fact true that any map from an affine scheme is affine; indeed, if SpecA → MFG is any

morphism, the pullback SpecR ×MFG SpecA is precisely the pullback in the diagram

SpecR ×MFG SpecA SpecR × SpecA

MFG MFG ×MFG
∆

Being flat and affine, we need only check that the map is also surjective, which we do now.

As surjectivity may be checked stalk-locally, it suffices to consider the pullback of our potential

covering along any morphism Spec k → M<n+1
FG from the spectrum of a field, corresponding to a

formal group law f (x, y) of height < n + 1 over k. We next point out that the result is trivial if

p = 0, for then all primes are invertible in k so that Lemma A.3.6 applies. Thus we may assume k

is of characteristic p. Let’s write d for the height of our formal group law — this is well-defined as

we are working over a field.
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Once we show that there exists some morphism SpecA → SpecZ(p)[v1, . . . , v±1
n ] ×M<n+1

FG
Spec k,

we should be done, because this would imply that the pullback is non-empty and hence the map

to Spec k is surjective on the underlying spaces. We take A to be the separable closure k of k.

By Theorem A.3.12, the pullback of our formal group law f (x, y) to k is isomorphic to any other

formal group law of height d over k. We pick a particularly suitable formal group law: take the

formal group law g(x, y) corresponding to the map L(p) � Z(p)[t1, t2, . . .]→ k sending tpd−1 and tpn−1

to 1 and sending all other ti to 0. Using Corollary A.3.10 again, we see that g(x, y) is of height d, and

that moreover vn(g) is invertible. Essentially by construction, the map L(p) → k factors through

SpecZ(p)[v1, . . . , v±1
n ]. Thus we find an induced map Spec k → SpecZ(p)[v1, . . . , v±1

n ] ×M<n+1
FG

Spec k,

which proves the result. �

The above result omits the open substack M<1
FG, but this one turns out to be particularly simple

in nature. Looking at the definition, M<1
FG classifies the formal group laws for which v0, i.e. p, is

invertible. As we are already working over Z(p), this tells us that M<1
FG is really just MFG × SpecQ.

As established in Lemma A.3.6, formal group laws over Q-algebras are well understood, and this

allows us to come up with the following result.

Lemma 3.2.4. The stack M<1
FG is isomorphic to BGm × SpecQ, where Gm denotes SpecZ[x±1]

with the usual group structure. �

Proof: A proof can be found in [4, Cor. 3.21]. We give an alternative proof here (although it

boils down to the same idea). Let R be a Q-algebra. We investigate the structure of the groupoid of

formal group laws over R. Its objects will correspond to the formal group laws over R, and for any

two formal group laws, the morphisms are parametrized by the unit group R∗, so that composition

of any two morphisms correspond to multiplication of the unit group.

We first consider the automorphism group of the additive formal group law over R (where the

group structure is composition). Suppose h is an automorphism, so that h(x + y) = h(x) + h(y).

Write h(t) = h1t + h2t2 + · · · , expand both sides, and compare the coefficients. One easily finds

that h2 = h3 = · · · = 0, so that h(t) = ut for some unit u ∈ R∗.

Now take any formal group law f (x, y) over R. In the proof of Lemma A.3.6, we saw that

we can construct an isomorphism logf between f (x, y) and the additive formal group law, so that

logf
(
f (x, y)

)
= logf (x)+logf (y). For any unit u, u ·logf again defines an isomorphism. We claim that

there are no others. To do this, take two isomorphisms h1 and h2 between f (x, y) and the additive

formal group, and consider the composition h1 ◦ h−1
2 . This composition defines an automorphism

of the additive formal group, which by the previous paragraph must be of the form ut with u a

unit.

Next, consider the automorphism group of any formal group law f (x, y) over R. Take an

automorphism h : f (x, y)→ f (x, y), and compose it with logf . By the previous paragraph, the result
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must be u · logf for some unit u; that is, logf
(
h(t)

)
= u · logf (t). Let expf (t) be the compositional

inverse of logf (t). Then h(t) is determined to be expf
(
u · logf (t)

)
. This establishes a bĳection

between Aut
(
f (x, y)

)
and R∗, and one can check directly that it respects the group structures.

Finally, take two formal group laws f (x, y) and g(x, y), and consider an isomorphism from

f (x, y) to g(x, y). For any two such isomorphisms, we can again compose one with the inverse of the

other, and the previous paragraph tells us that the result will be parametrized by R∗. This allows us

to conclude that the isomorphisms from f (x, y) to g(x, y) are parametrized by R∗ as well. If h(x, y) is

a third formal group law, then isomorphisms f (x, y)→ g(x, y) and g(x, y)→ h(x, y), corresponding

to two units, can be composed, and a direct verification shows that their composition corresponds

to the product of the two units.

In order to prove that M<1
FG and BGm × SpecQ are equivalent, it suffices to show that the

prestacks we constructed to define these two stacks (namely, in Section 3.1 and Example 2.3.2)

are already equivalent before stackifying. We define a functor from the prestack defining M<1
FG

to the prestack defining BGm × SpecQ by sending a formal group law over a Q-algebra R to the

unique object in the fibre (BGm × SpecQ)(SpecR), while sending an isomorphism of formal group

laws over R corresponding to a unit u ∈ R∗ to the morphism in the fibre (BGm × SpecQ)(SpecR)

corresponding to the same unit. This association defines a morphism of prestacks. It is easily

seen to be essentially surjective, while fully faithfulness comes from our analysis of the groupoid

M<1
FG(SpecR). Thus we have an equivalence of prestacks, which remains an equivalence after

stackifying. �

In a similar way, we define Mn
FG for the open complement of M≥n+1

FG within M≥nFG. As M≥n+1
FG

is defined by the vanishing of the principal ideal sheaf (vn) inside M≥nFG, it follows that Mn
FG is the

moduli stack of formal groups of height exactly n. For the sake of giving different perspectives

where we can, it is also the Adams stack associated to the Hopf algebroid (A,Γ) where A is the ring(
L(p)/(p, v1, . . . , vn−1)

)
[v−1
n ], and Γ is the ring A[t±1

0 , t1, . . .].

The geometry of the substacks Mn
FG are understood quite well geometrically, and we’ll briefly go

over the main result, although we won’t need them in any serious way. We follow [4, Section 5.3].

To start off, we need the following construction. Take the formal group laws f (x, y) and g(x, y)

over a ring R, corresponding to a map SpecR →MFG ×MFG, and write IsoR
(
f (x, y), g(x, y)

)
for the

2-fibre product of this map along the diagonal MFG → MFG ×MFG, omitting the reference to R

if context is clear. As MFG is an Adams stack, the diagonal is affine, hence Iso
(
f (x, y), g(x, y)

)
is

an affine scheme. For any affine scheme SpecA, the A-valued points of Iso
(
f (x, y), g(x, y)

)
are in

correspondence with a map π : SpecA → SpecR, along with an isomorphism of formal group laws

φ : π∗f (x, y)→ π∗g(x, y). The following result is [4, Thm. 5.23] and may be regarded as a geometric

interpretation of Theorem A.3.12.
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Theorem 3.2.5. Let f (x, y) and g(x, y) be two formal group laws of height n over R. Then the

map Iso
(
f (x, y), g(x, y)

)
→ SpecR is surjective and pro-étale. �

The scheme Iso
(
f (x, y), g(x, y)

)
admits an action by Iso

(
f (x, y), f (x, y)

)
(and, by symmetry, also

by Iso
(
g(x, y), g(x, y)

)
but this isn’t going to give us anything new), and this turns Iso

(
f (x, y), g(x, y)

)
into an Iso

(
f (x, y), f (x, y)

)
-torsor. We may now state the following result, found as [4, Thm. 5.30],

which, as promised, describes the geometry of Mn
FG.

Theorem 3.2.6. The stack Mn
FG has a single geometric point, represented by any height-n

formal group law f (x, y) over Fp. Fixing f (x, y), the map Mn
FG → B Iso

(
f (x, y), f (x, y)

)
sending

a formal group law g(x, y) over R to the torsor Iso
(
f (x, y), g(x, y)

)
is an equivalence of algebraic

stacks. �

3.3 The Landweber exact functor theorem

Recall from Section 1.3 that every complex orientation on a ring spectrum E corresponds to

a map of ring spectra MU → E, which gives rise to a map of coefficient rings MU∗ → E∗ that

by Theorem 1.3.9 in turn yields a formal group law over E∗. We now ask the following converse

question. Given some graded ring E∗, and a graded formal group law f (x, y) over E∗ classified by

a graded ring map MU∗ → E∗, is there a spectrum E with π∗(E) = E∗, endowed with a complex

orientation MU → E that gives rise to the formal group f (x, y)? This is what we turn to in this

section. Much of the contents in this section can be found back in [5, Lectures 15–17] and [7,

Sections 4.1 and 4.7]. As the word ‘Spec’ will be used, we’ll need to assume that E∗ is an evenly

graded ring so that it becomes commutative rather than just anti-commutative.

Here’s what will turn out to be the winning recipe. Given a graded ring E∗, and a formal group

law classified by a graded map L � MU∗ → E∗, we take the functor X 7→ MU∗(X )⊗L E∗ from spectra

to graded abelian groups. In decent cases, this will turn out to be a homology theory, represented

by some spectrum E, which has strong potential to satisfy the desired properties. We turn to

the question when our functor defines a homology theory. To check that the functor defines a

homology theory, we should verify the Eilenberg–Steenrod axioms. The only non-trivial part is the

following. Given a cofibre sequence of spaces A → X → C, will we end up with an exact sequence

upon applying MU∗( · ) ⊗L E∗?

If E∗ is flat over L, then the answer is obviously yes. It is often said, however, that there are

not many interesting flat modules over L. To illustrate this, suppose R is a flat L-module, where

we forget about gradings for a moment. Let a be an element of L, and consider the map L → L

sending x to ax. This is an L-module homomorphism, and it is injective because L doesn’t have

zero-divisors. Now tensor this with the identity map on R to find the map µa : R → R sending r ∈ R

to ar. If R is a flat L-module, this should still be an injection. This indicates that M must be ‘very
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large’, so to speak, to ensure flatness over L. To make this even more precise, if R is actually an

L-algebra, we can apply the various µa to 1 ∈ R, which shows that L → R must be an injection.

As it turns out, the functor is already a homology theory under much weaker circumstances.

Evidence of this is already given by the fact that we do not need to consider arbitrary modules

over L, but rather only those of the form MU∗(X ). In fact, we find the following result.

Theorem 3.3.1 (Landweber Exact Functor Theorem). Consider a graded formal group

law over a graded ring E∗, corresponding to a ring map L → E∗. If the corresponding map

SpecE∗ → MFG is a flat morphism of algebraic stacks, then the functor X 7→ MU∗(X ) ⊗L E∗ is a

homology theory. �

We remark right away that there’s also a 2-periodic version of this theorem, which we talk

about above Example 3.3.5. Before proving this result, it is worth spending some time on why

it answers to our prayers. First, we mention that this indeed a weaker condition on E∗ than

the previous one. Indeed, if SpecE∗ → Spec L is a flat morphism, then so is the resulting map

SpecE∗ →MFG, as the canonical map Spec L →MFG is flat as well. We saw this in Section 2.5.

The homology theory X 7→ MU∗(X ) ⊗L E∗ is representable by some unique spectrum which we

denote by E. Moreover, thanks to Theorem 1.1.3, any map E∗ → E′∗ lifts to a map of spectra. We

would like to then conclude that the association sending E∗ to E is functorial. But we need to be

careful: due to the existence of phantom maps, the lifts may perhaps not be unique. As it turns

out, however, in certain special cases, the existence of phantom maps is ruled out. In [5, Prop. 10

of Lecture 17] we find that there are no non-trivial phantom maps between evenly graded spectra.

This applies to us because E is evenly graded. Indeed, notice that

πS
∗ (E) = [S,Σ−∗S ∧ E] = E0(Σ−∗S) = E∗(S) = MU∗(S) ⊗L E∗ .

By Theorem 1.2.7, MU is evenly graded hence the above equalities tell us that E is, too.

There are multiplicative structures on the homology X 7→ MU∗(X ) ⊗L E∗, and thanks to the

uniqueness of lifts discussed above, we know that this turns E into another ring spectrum; more-

over, it follows that the map of spectrum MU→ E defined by the unique lift of the obvious natural

transformation MU∗(X ) → MU∗(X ) ⊗L E∗ must be in fact be a map of ring spectra. By Theo-

rem 1.3.8 it follows that E is complex orientable, and that the formal group law associated to E is

precisely the one we started out with.

It is about time we look at the proof of Theorem 3.3.1. We start with a technical lemma that

already does most of the work.

Lemma 3.3.2. Take a formal group law over a commutative ring R, yielding a morphism

f : SpecR → MFG. Let E be an R-module that is flat over MFG. Then the functor sending a

quasi-coherent sheaf M over MFG to f ∗M ⊗R E is an exact functor QCoh(MFG)→ R–Mod. �
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More generally, the claim holds even if f is a morphism that does not come from a formal

group law over R. Let us also mention the meaning of E being flat over MFG. Recall that we

defined a pushforward of quasi-coherent sheaves along any affine morphism of algebraic stacks.

The map f is affine — see the first paragraph in the proof of Lemma 3.2.3. The pushforward f∗

of quasi-coherent sheaves therefore makes sense, and when we say E is flat over MFG, we really

mean that f∗E is flat over MFG, which in turn means that, for any morphism q : SpecA → MFG,

the pullback of f∗E along q is flat as an A-module.

Proof of Lemma 3.3.2: We pull our map f back along the obvious map Spec L → MFG to find

a 2-pullback diagram

SpecR[b±1
0 , b1, b2, . . .] Spec L

SpecR MFG

f ′

p′ p

f

The map p is faithfully flat hence so is p′. Let us look at the composed functor M 7→ f ∗M ⊗R E 7→

(p′)∗(f ∗M ⊗R E). It turns out that it suffices to show that this composed functor is left-exact.

Indeed, the claim below implies that this tells us that the first half of the composition is also

left-exact, and this is enough for our purposes, as right-exactness is automatic.

Lemma 3.3.3. Take two additive functors F : A → B and G : B → C between abelian cate-

gories and assume that G is faithful and exact. Then F is left-exact if G ◦ F is left-exact. �

Proof of Lemma 3.3.3: To check this, left-exactness is equivalent to preservation of kernels,

hence for any morphism f in A, we have G ◦ F (Ker f ) = Ker
(
G ◦ F (f )

)
= G

(
Ker F (f )

)
. Thus, the

natural map F (Ker f ) → Ker F (f ) becomes an isomorphism after applying G. We need only verify

now that F (Ker f ) → Ker F (f ) was already an isomorphism before applying G. This is indeed the

case, due to the faithfulness and exactness assumption on G. �

We continue our main proof. We notice that

(p′)∗(f ∗M ⊗R E) � (f ◦ p′)∗M ⊗R[b±1
0 ,b1,...] (p′)∗E pullbacks commute with ⊗

� (p ◦ f ′)∗M ⊗R[b±1
0 ,b1,...] (p′)∗E commutativity

� p∗M ⊗L f
′
∗ (p′)∗E definition of pullback

� p∗M ⊗L p
∗f∗E flat base change [11, Tag 02KH]

By flatness of p, the pullback functor p∗M is exact. By flatness of E as a module over MFG, p∗f∗E

is flat as a module over L. It follows that the functor M 7→ p∗M ⊗L p∗f∗E is exact, which proves the

result. �

Proof of Theorem 3.3.1: We claim that the functor X 7→ E∗(X ) = MU∗(X )⊗MU∗ E∗ is a homology

theory. By looking at the Eilenberg–Steenrod axioms for reduced homology, it suffices to show
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the following. Given an inclusion i : A ↪→ X of pointed spaces, with mapping cone X → C(i), the

resulting morphism Ẽ∗(A) → Ẽ∗(X ) → Ẽ∗
(
C(i)

)
is an exact sequence. We know that M̃U∗(A) →

M̃U∗(X ) → M̃U∗
(
C(i)

)
is an exact sequence, and in fact, it is exact in the category of graded MU-

comodules. In Section 3.1 we saw how graded comodules correspond to quasi-coherent sheaves

over MFG, hence we have a resulting exact sequence FA → FX → FC(i) in QCoh(MFG).

At this point, we apply Lemma 3.3.2 in the special case where f is the map Spec MU∗ →MFG,

and E is the graded MU∗-module E∗, which is flat over MFG thanks to the flatness assumption on

the morphism SpecE∗ → MFG. We find that the functor QCoh(MFG) → MU∗–Mod sending M to

f ∗M ⊗MU∗ E∗ will be exact. Apply this exact functor to the exact sequence FA → FX → FC(i), and,

if you wish, compose with forgetful functors to Ab (which are exact as well) and the desired result

follows. �

There’s another well-known theorem, intimately connected with the one above, that carries

the same name. Let us take a formal group law over a ring R, corresponding to a ring map L → R.

Let vn be the pn-th coefficient of the p-series of the formal group law over R. To formulate the

original criterion ensuring flatness of R over MFG, we recall the following notion from commutative

algebra. Given a commutative ring R, and an R-module M, an M-regular sequence is a sequence

of elements r1, r2, . . . in R such that ri is a non-zero-divisor of M/(r1, . . . , ri−1)M for all i ≥ 1. We

remark here that the element 0 is never a zero-divisor.

Theorem 3.3.4 (Landweber Exact Functor Theorem). A module M over the Lazard ring L

is flat over MFG if and only if, for every prime p, the sequence v0, v1, . . . in L is an M-regular

sequence. �

The proof of this statement can be found in [5, Lecture 16]. We’ll see applications of this later

in this section. But before we go on I’d like to briefly talk about the grading issue that we also

mentioned in Section 3.1. Rather than working with MFG, we could’ve worked with Ms
FG as well,

and all results would still hold.

Also, if R∗ is an evenly graded ring, then let us write R[u±1] for the associated ungraded ring,

perhaps interpreted as a graded ring concentrated in degree 0 if needed. If there’s a flat map

SpecR∗ →MFG classifying a formal group law over R, then there’s also a map SpecR[u±1]→MFG

and surely this map will also be flat. Lemma 3.3.2 dictates we get another homology theory,

namely X 7→ MU∗(X )⊗L R[u±1], which is exactly X 7→ MUP∗(X )⊗L R. Thus there’s also a 2-periodic

version of Landweber’s exact functor theorem.

Example 3.3.5. Recall from Example 1.2.5 the definition of the complex K-theory spectrum

KU. We have πS
∗ (KU) � Z[u±1], where u is an element of degree 2. In Example 1.3.6 we learned

that KU admits a complex orientation, whose formal group law is given by f (x, y) = x + y + uxy.

A simple calculation shows that, for any prime p, we have v0 = p, v1 = up−1, and vi = 0 for all
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i ≥ 2. This clearly defines a regular sequence for all p, hence the map Spec πS
∗ (KU) → MFG is

flat. Theorem 3.3.1 now tells us that the functor X 7→ MU∗(X ) ⊗L πS
∗ (KU) is a homology theory.

It is reasonable to believe that the spectrum arising in the above example is related to the

complex K-theory spectrum that we started with, and indeed this is the case. By Theorem 1.3.8,

the complex orientation on KU yields a map of ring spectra MU → KU; for all spaces X , this

in turn gives us a morphism MU∗(X ) ⊗L πS
∗ (KU) → KU∗(X ). This morphism clearly induces an

isomorphism on the coefficient groups, hence by Theorem 1.1.1 the morphism is an isomorphism

of spectra in Ho(Sp).

Example 3.3.6. Consider the inclusion of the open substack M<n+1
FG into MFG. By virtue

of Lemma 3.2.3 this substack admits an fpqc atlas from SpecZ(p)[v1, . . . , v±1
n ]. The composi-

tion of the atlas with the open inclusion is flat (since all open inclusions are flat), and hence

by Theorem 3.3.1 we find a homology theory X 7→ MU∗(X ) ⊗L Z(p)[v1, . . . , v±1
n ], called Johnson–

Wilson theory or (uncompleted) Morava E-theory, and denoted E(n). By the discussion on

grading above, there are also a 2-periodic versions of these spectra, defined by the functors

X 7→ MUP∗(X ) ⊗L Z(p)[v1, . . . , v±1
n ]. They carry the same names and notations, and the literature

often does not distinguish between the two versions. We’ll denote the periodic version by E(n)P.

Lemma 3.3.7. The spectrum E(n) is a flat ring spectrum, and the Adams stack associated

to it, in the sense of Example 2.5.1, is precisely Ms,<n+1
FG . Similarly, the Adams stack associated to

the ungraded flat Hopf algebroid
(
πS

0
(
E(n)P), Ẽ(n)

P
0
(
E(n)P)) is M<n+1

FG . �

Proof: The second part of the lemma is proved in essentially the same way as the first part,

so we only consider the first part. We start out with the claim that we have a pullback diagram

Spec Ẽ(n)∗E(n) SpecE(n)∗

SpecE(n)∗ Ms,<n+1
FG

To prove our claim, we first point out that by Lemma A.3.7, we may replace the M<n+1
FG by MFG.

By Lemma 3.1.1, the pullback is naturally isomorphic to SpecE(n)∗ ⊗L W s ⊗L E(n)∗. At this point,

we remark that

Ẽ(n)∗E(n) = MU∗
(
E(n)

)
⊗L E(n)∗

= [S,MU ∧ E(n)]∗ ⊗L E(n)∗

= Ẽ(n)∗(MU) ⊗L E(n)∗

= MU∗(MU) ⊗L E(n)∗ ⊗L E(n)∗

= E(n)∗ ⊗L W s ⊗L E(n)∗

which shows what we wanted. It remains to be verified that the projection maps are precisely the

source and target maps E(n)∗ → E(n)∗E(n) as described in Example 2.1.5. From the correspon-
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dence defined in Section 2.5 the desired result would then follow. This verification is a matter of

bookkeeping, and will be omitted. �

Under the correspondence between the 2-category of Adams stacks and the 2-category of flat

Hopf algebroids (see Section 2.5 and the reference to [8] therein), the inclusion of Ms,<n+1
FG into Ms

FG

corresponds to the obvious morphism of Hopf algebroids
(
MU∗, M̃U∗MU

)
→

(
E(n)∗, Ẽ(n)∗E(n)

)
. If

X is a space, the associated sheaf F s
X on Ms

FG can then be pulled back to a sheaf on Ms,<n+1
FG .

The comodule associated to this pullback is precisely Ẽ(n)∗(X ). It follows that a spectrum A is

E(n)-acyclic if and only if the restriction of F s
A to Ms,<n+1

FG vanishes.

Suppose now that X is another spectrum, whose sheaf on Ms
FG is supported on Ms,<n+1

FG . Then

for any E(n)-acyclic spectrum A, one does not expect any non-trivial maps A → X , hence we may

expect X to be E(n)-local. Conversely, suppose that the sheaf F s
X of X over Ms

FG is not supported

on Ms,<n+1
FG . Then one can also argue why we do not expect X to be E(n)-local, although it’s a bit

awkward to explain why at this point. Taking this for granted for now, what this tells us is that we

expect E(n)-localization to somehow correspond to restriction to the open substack Ms,<n+1
FG , and

this can indeed be made precise. We’ll never need it, but the reader can find it back in [5, Thm. 1

of Lecture 22].

Theorem 3.3.8. Localization at E(n) is smashing. That is, if X is a spectrum, then LE(n)X �

E(n) ∧ X . As a consequence, the sheaf on Ms
FG associated to LE(n)X is the sheaf associated to the

comodule M̃U∗(MU ∧ X ) ⊗π∗MU E(n)∗ over
(
πs
∗(MU), M̃U∗MU

)
. �

Of course, the open substack M<n+1
FG admits many other fpqc coverings, and the one we chose

doesn’t appear to be special in any particular way. Every fpqc covering gives rise to a spectrum in

the same way. While they may not be isomorphic, we do have the following comparison.

Lemma 3.3.9. Any two spectra defined by applying Landweber’s exact functor theorem to

an fpqc covering of M<n+1
FG are Bousfield equivalent. �

Proof: For any two spectra defined this way, we claim that acyclicity is equivalent. In the

discussion above we argued that a spectrum A is E(n)-acyclic if and only if F s
A restricts to zero

on Ms,<n+1
FG . This statement relied only on the fact that the stack of E(n) is Ms,<n+1

FG , as followed

from Lemma 3.3.7. At no point in that proof did the choice of fpqc covering matter; thus, the same

discussion is valid for any other spectrum obtained from a covering of M<n+1
FG . �

Consider now the special case where n = 1. We have πS
∗E(1) � Z(p)[v±1

1 ], which is very similar

to the graded ring πS
∗ (KU(p)) � Z(p)[u±1] that we considered in Example 1.4.11. We point out,

however, that they are not isomorphic as graded rings: the element u has degree 2, whereas v1

has degree 2p − 2. Nonetheless, there is more to be said.

58



Fix an isomorphism L(p) � Z(p)[t1, t2, . . .] such that tpi−1 = vi . The formal group law associated

to p-local complex K-theory is the map L(p) → Z(p)[u±1] sending tp−1 to up−1, sending the other tpi−1

to zero, and doing mysterious things to the remaining ti . What about the formal group law

associated to E(1)? Looking back at Lemma 3.2.3, it must be the map L(p) → Z(p)[v±1
1 ] sending tp−1

to v1 and sending all the other ti to zero.

It sounds like the two constructions cannot be compared. But we can reason our way out of

this. At no point does the proof of Lemma 3.2.3 depend on the precise map SpecZ(p)[v1, . . . , v±1
n ]→

M<n+1
FG , so long as the corresponding formal group law is of height < n + 1. It is therefore entirely

irrelevant what the map L(p) → Z(p)[v1, . . . , v±1
n ] does to those tj for j , pi − 1: it always yields

an fpqc cover, and hence by Landweber’s exact functor theorem, a spectrum that deserves to

be called E(1); moreover, by Lemma 3.3.9, no matter what choice we make for the covering, the

resulting E(1)’s are Bousfield equivalent.

So we need to ask ourselves whether we can choose the formal group law over Z(p)[v±1
1 ]

in such a way that the pullback along the map Z(p)[v±1
1 ] → Z(p)[u±1] is the formal group law

f (x, y) = x +y+uxy of complex K-theory. The coefficient u not being in the image of this ring map,

and the answer therefore seems to be negative. But we can fix this. As it turns out, we are free to

replace the formal group law of KU(p) by an isomorphic one.

Lemma 3.3.10. Let f (x, y) and g(x, y) be two Landweber exact formal group laws over a

ring R. Then the two spectra given rise to via Landweber’s exact functor theorem are homotopy-

equivalent. �

Proof: The formal group law f (x, y) corresponds to a map L(p) → R, which we may write as

L(p)
srce
−−−→ W(p) → R; the formal group law g(x, y) corresponds to the map L(p)

trgt
−−−→ W(p) → R. The

homology theory Ef of f (x, y) is defined by (Ef )∗(X ) = MU∗(X )⊗L,srceW ⊗W E∗, while that of g(x, y) is

defined by (Eg)∗(X ) = MU∗(X )⊗L,trgtW ⊗W E∗. Define the map (Ef )∗(X )→ (Eg)∗(X ) sending a simple

tensor m ⊗w⊗e to m ⊗ inv(w)⊗e. This defines an isomorphism of groups which by Theorem 1.1.1

lifts to an isomorphism of spectra. �

We replace the formal group law f (x, y) of KU(p) by its so-called p-typification. This is some-

thing we haven’t talked about, so we’ll just state, without proof, some definitions and facts. More

on this can be found in [9, Section A2.1].

� Certain formal group laws deserve to be called p-typical.

� Every formal group law over a p-local ring is canonically isomorphic to a p-typical one,

called its p-typification.

� The p-typical formal group laws are represented by a p-typical analogue V of the Lazard

ring, which is non-canonically isomorphic to Z(p)[v1, v2, . . .]. The vi ’s in this notation

coincide with the vi ’s in the expression of the p-series up to (p, v1, . . . , vi−1).
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The reader can find more about this in [9, Section A2.1]. In any case, we replace the formal

group law of Z(p)[u±1] with its p-typification, and it should correspond to a certain map from the

ring V � Z(p)[v1, v2, . . .] to Z(p)[u±1] sending v1 to up−1 and sending the other vi to 0. Having

gone through this, we now know what formal group law we should pick to define E(1): the map

V → Z(p)[u±1] does factor through Z(p)[v±1
1 ], and the factored map corresponds to a p-typical

formal group law over Z(p)[v±1
1 ] which satisfies the hypotheses needed for the map SpecZ(p)[v±1

1 ]

to be fpqc.

Lemma 3.3.11. We have a splitting KU(p) �
∨p−2
i=0 Σ2iE(1), and consequently, KU(p) and E(1)

are Bousfield equivalent. �

The Bousfield equivalence can also already be seen from Lemma 3.3.9, as the formal group

law of KU(p) defines an fpqc covering of M<2
FG as well.

Proof: On the one hand,
(
KU(p)

)
∗(X ) = MU∗(X ) ⊗L Z(p)[u±1], whereas on the other hand,

E(1)∗(X ) = MU∗(X ) ⊗L Z(p)[v±1
1 ]. By the discussion above, the L-algebra structure on Z(p)[u±1]

factors through the L-algebra structure on Z(p)[v±1
1 ], in the sense that the diagram

L Z(p)[u±1]

Z(p)[v±1
1 ]

v1 7→up−1

commutes. Consequently, we may write(
KU(p)

)
∗(X ) = MU∗(X ) ⊗L Z(p)[u±1]

= MU∗(X ) ⊗L Z(p)[v±1
1 ] ⊗Z(p)[v±1

1 ] Z(p)[u±1]

= MU∗(X ) ⊗L
p−2⊕
i=0

u i · Z(p)[u±1]

=

p−2⊕
i=0

MU∗(X ) ⊗L u i · Z(p)[u±1]

=

p−2⊕
i=0

MU∗−2i(X ) ⊗L Z(p)[u±1]

As MU∗−2i(X ) is just Σ2iMU∗(X ), it follows that the natural map of spectra KU(p) →
∨p−2
i=0 Σ2iE(1)

induces an isomorphism on homology, which by Theorem 1.1.1 is sufficient to prove that the map

is an isomorphism of spectra. With this equality in place, it is easy to see that a spectrum is

KU(p)-acyclic if and only if it is E(1)-acyclic, which proves the stated consequence. �

We find that the KU(p)-local stable homotopy category coincides with the E(1)-local stable

homotopy category. We will make heavy use of this in Chapter 4.
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3.4 Lubin–Tate deformation theory

The algebraic stack Mn
FG may be viewed as a closed substack of M<n

FG, and consequently, we

may define the formal completion of Mn
FG within M<n

FG, which we conveniently denote by M̂n
FG. In

the language of Section A.3, this algebraic stack classifies the formal group laws that are almost

of height n. This substack, too, has interesting geometric properties, and in fact we devote this

entire section to it. Our discussion is based on [4, Ch. 7] but we aim to give some additional or

alternative proofs. Throughout this section, we work localized at the prime p.

Let f (x, y) be a formal group law over a field k, and let A be a local Artinian ring whose residue

field isomorphic to k, say via an isomorphism ϕ : A/m → k. We define a deformation of f (x, y)

over A to be a formal group law fA(x, y) over A such that ϕ∗π∗fA(x, y) = f (x, y). Here π denotes the

projection map A → A/m. An isomorphism of deformations fA(x, y)→ f ′A(x, y) is an isomorphism

h : fA(x, y)→ f ′A(x, y) such that ϕ∗π∗h(t) = t.

Write Art(k) for the category whose objects are pairs (A, ϕ), where A is a local Artin rings, and

where ϕ is an isomorphism of fields A/m → k; and whose morphisms (A, ϕ) → (A′, ϕ′) are local

ring homomorphisms whose induced maps A/m→ A′/m′ on residue fields are compatible with ϕ

and ϕ′. We define a functor Def : Art(k) → Set by sending an Artin ring A to the collection of

isomorphism classes of deformations of f (x, y) over A.

There are several alternative definitions that one can work with. For instance, one can ask

for the isomorphism ϕ : A/m → k not to be part of the category of Artin rings, but to instead be

part of the data defining a deformation. One can work with local Artinian k-algebras rather than

rings, or with complete local rings rather than Artinian ones. When defining deformations, one

can also ask for ϕ∗π∗fA(x, y) to be isomorphic to f (x, y) rather than being equal to it, and perhaps

require the isomorphism to be another part of the data.

In practice, these choices make little difference to the outcome, which is that, if f (x, y) is of

height exactly n, the deformation functor will be pro-representable, which means that it is a

colimit of a small filtered diagram of representable functors. When working with k-algebras rather

than rings, one can expect the representing pro-object to be different, but because the notion of

deformation does not depend on the presence of the algebra structure, it is easy to argue what

the representing pro-k-algebra will be if you know what the representing pro-Artin ring is. That

said, the choices we have made were made consciously so, as we’ll explain in a second. We first

formally state the promised outcome.

Theorem 3.4.1 (Lubin–Tate Theorem). Let k be a perfect field of characteristic p. If f (x, y)

is a formal group law over k of height exactly n, where n is a finite positive integer, then the

functor Def is pro-representable. In fact, the functor is represented by the complete local ring

R(k, f ) = W (k)[[t1, . . . , tn−1]], and there exists a formal group law funiv(x, y) over R(k, f ) such that
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the deformation corresponding to a local ring map R(k, f )→ A is precisely the pullback of funiv(x, y)

along this map. �

Our goal is to prove this theorem using Schlessinger’s representation theorem in formal de-

formation theory. We swiftly recall the contents of this theorem. To start off with, there is the

following well-known result.

Theorem 3.4.2. Let C be an essentially small category with finite limits. Then a functor

F : C→ Set is pro-representable if and only if it preserves finite limits. �

Proof: I learned the proof from [15]. The idea goes like this. Given F : C → Set, one may

define a category el(F ) consisting of all elements in F (c) as c ranges over C. The functor F is

tautologically the colimit over a certain functor el(F ) → Funct(C,Set), and the properties of C tell

us that the diagram over which we take our colimit is essentially small and filtered. �

This theorem tells us that, in order to prove Theorem 3.4.1, it suffices to verify that the

deformation functor preserves finite limits, which in turn follows once we show that it preserves

pullbacks and the terminal object. At this point we remark that our choice of category of Artin

rings becomes relevant: had we taken the isomorphism ϕ : A/m → k of residue fields as part of

the definition of a deformation rather than part of the category of Artin rings, our deformation

functor would not have preserved terminal objects (unless k has no non-trivial automorphisms).

Schlessinger’s representation theorem essentially says that, if C is the category Art(k), it

suffices to check certain weaker conditions. The way we state the theorem isn’t the strongest

possible version, but it suffices for us.

Theorem 3.4.3 (Schlessinger’s Representation Theorem). Let C be the category Art(k),

where k is perfect and of characteristic p. Then in order for F : Art(k)→ Set to be pro-representable,

it suffices to verify the following hypotheses.

� F preserves terminal objects;

� whenever we have a pullback diagram in Art(k) of the form

A′ ×A A′′ A′′

A′ A

where the map A′ → A is surjective, the natural map F (A′ ×A A′′)→ F (A′) ×F (A) F (A′′) is a

bĳection;

� the set F
(
k[ε]/(ε2)

)
, when endowed with the k-vector space structure we clarify below, is

finite-dimensional.

62



One can always choose the pro-object to be (R, ϕ), where R is a complete local ring R such

that R/mn is in Art(k) for all n, and ϕ is a fixed isomorphism R/m → k. If moreover F preserves

surjections, then R is W (k)[[v1, . . . , vd]], where d is the dimension of F
(
k[ε]/(ε2)

)
and W (k) is the

ring of Witt vectors of k. �

About the vector space structure. The ring k[ε]/(ε2) is a k-vector space object in the category

Art(k). That is, it admits an addition map k[ε]/(ε2) ×k k[ε]/(ε2) → k[ε]/(ε2), defined by sending

(ε,0) and (0, ε) to ε, and for every v ∈ k, it admits an action map k[ε]/(ε2) → k[ε]/(ε2) defined

by sending ε to vε. As F preserves products, it preserves the vector space structure, and a vector

space object in Set just so happens to be, well, a vector space. It is this vector space whose

dimension we put bounds on in the statement above.

What’s up with the appearence of the ring of Witt vectors? As it turns out, it has to do with

the following property satisfied by W (k), which holds only when k is perfect. For any complete

local ring R, there exists a unique dashed arrow making the solid diagram

W (k) R

k R/m

commute. Rings with such lifting properties are also called Cohen rings. For all fields of charac-

teristic p, even non-perfect ones, Cohen rings exist. Considering that this is the only point where

we need the fact that k is perfect, perhaps Theorem 3.4.1 also holds for non-perfect fields, the

ring of Witt vectors being replaced by a Cohen ring. The author is not aware of a reference for the

facts stated above.

Proof sketch of Theorem 3.4.3: Every statement except the very last sentence is the main

result of [10]. In his notation, we set Λ to be W (k), where we remark that the universal property

of the Witt ring always induces a W (k)-algebra structure on a given local Artinian ring. We thus

need only show the last part. Let F : Art(k) → Set and suppose F preserves surjections. For any

vector v in F
(
k[ε]/(ε2)

)
, we can find a lift v to F

(
W (k)[[t]]

)
along the surjection W (k)[[t]]→ k[ε]/(ε2)

sending t to ε. The reader may object that W (k)[[t]] isn’t local Artinian, but it’s the filtered limit of

local Artinian rings (namely, W (k)[[t]]/mn) but we can just extend the definition of F to complete

local rings by preserving limits.

Pick a k-vector space basis {v1, . . . , vd} of F
(
k[ε]/(ε2)

)
. As F preserves surjections, we may

lift them to elements {v1, . . . , vn} of F
(
W (k)[[t]]

)
. In turn, lift these elements to a single ele-

ment v of F
(
W (k)[[t1, . . . , td]]

)
along the surjections W (k)[[t1, . . . , td]]→

∏d
i=1W (k)[[ti]]

pj
−→ W (k)[[tj]]

for j = 1, . . . , d. Our claim is that, for any local Artin ring A, there’s a bĳection between

Hom
(
W (k)[[t1, . . . , td]], A

)
and F (A), where the bĳection is defined by pushing forward v along

whatever local ring map.

63



The proof of our claim proceeds by induction on the length of the Artin rings — a technique

the reader will also find back in [10]. Note that this suffices because local Artin rings are of finite

length. If A is a local Artin ring of length 1, then A is isomorphic to k, so that F (A) must be

terminal, i.e. a one-element set. The same is obviously true for Hom
(
W (k)[[t1, . . . , td]], A

)
. This

settles the induction basis. Suppose now that the result is true for all local Artin rings of length

smaller than n, and let A be a length-n local Artin ring. Pick a non-zero element x in A that is

annihilated by mA. (Such an element exists. The chain mA ⊇ m2
A ⊇ · · · stabilizes as A is Artinian,

and the stable ideal is 0 by Nakayama’s Lemma. Let n be the largest integer for which mnA , 0, and

take x to be a non-zero element in mnA.) As F preserves pullbacks, we have a pullback diagram

F
(
A ×A/(x) A

)
F (A)

F (A) F
(
A/(x)

)
The top-left ring, A ×A/(x) A, is isomorphic to k[ε]/(ε2) ×k A. The isomorphism is described as

follows. Given (a, a′) ∈ A ×A/(x) A, write a − a′ = bx. Send it to (a0 − bε, a), where a0 is the residue

of a mod mA. As its inverse, a pair (f0 + f1ε, a) in k[ε]/(ε2) ×k A should get sent to (a, a + f1x).

Having established the isomorphism, we may write down a pullback diagram

F
(
k[ε]/(ε2)

)
× F (A) F (A)

F (A) F
(
A/(x)

)
At this point, we recall that k[ε]/(ε2) was a group object in Art(k). The top horizontal arrow

may be interpreted as a group action of the group F
(
k[ε]/(ε2)

)
on the set F (A), whereas the left

vertical arrow is a projection. The fact that this diagram is a pullback determines what F (A) should

be; indeed, for every element y in F
(
A/(x)

)
, the pre-image of y in F (A), say f −1(y) is a pseudo-

torsor over F
(
k[ε]/(ε2)

)
, and in fact it’s a torsor due by surjectivity. (Preservation of surjectivity is

critical here!) The set f −1(y) is therefore isomorphic to F
(
k[ε]/(ε2)

)
as an F

(
k[ε]/(ε2)

)
-set, and as

this is true for all y, F (A) is just F
(
A/(x)

)
× F

(
k[ε]/(ε2)

)
.

We may now repeat the entire discussion, replacing F with Hom
(
W (k)[[t1, . . . , td]], ·

)
. When re-

peating the discussion we need to invoke the universal property of W (k) to ensure that surjections

are preserved. We conclude that, in an analogous way, Hom
(
W (k)[[t1, . . . , td]], A

)
is determined

by Hom
(
W (k)[[t1, . . . , td]], k[ε]/(ε2)

)
and Hom

(
W (k)[[t1, . . . , td]], A/(x)

)
. Now invoke the induction

hypothesis to conclude that F (A) � Hom
(
W (k)[[t1, . . . , td]], A

)
, as desired. �

Having proved this result, the hardest work is already done for us, and in order to prove The-

orem 3.4.1 it suffices to verify that our functor satisfies the hypotheses of Schlessinger’s theorem.

We’ll divide up the work in several steps.
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Proof of Theorem 3.4.1: Step 1. The preservation of the terminal object. This one is easily

seen: as the isomorphism of k was chosen not to be part of the data of the deformations, there

cannot be any non-trivial deformations over the pair (k, Id).

Step 2. We show that F
(
k[ε]/(ε2)

)
is finite-dimensional. To this end, we first construct a map

H : Def
(
k[ε]/(ε2)

)
→ kn−1, which we’ll show to be a well-defined bĳection in the next substeps.

Step 2.1. Take a deformation class, and represent it by a particular deformation f ′(x, y) over

k[ε]/(ε2), corresponding to a map L(p) → k[ε]/(ε2). Thanks to Corollary A.3.10 and because f (x, y)

is of height n, we know that the map L(p) → k representing f (x, y) can be chosen to correspond

to a map Z(p)[t1, t2, . . .] → k sending tpk−1 to 0 for k = 1, . . . , n − 1. It follows that the map

L(p) → k[ε]/(ε2) representing f ′(x, y) will send tpk−1 to ciε, where ci are elements in k. We take

(c1, . . . , cn−1) to be the image of H.

Step 2.2. We verify that H is well-defined. Suppose f ′(x, y) and f ′′(x, y) are two isomor-

phic deformations of f (x, y) over k[ε]/(ε2), related by an isomorphism h. The power series h(t)

representing the isomorphism must be of the form

h(t) = (1 + h1ε)t + h2εt
2 + h3εt

3 + · · · .

Write [p]′(t) and [p]′′(t) for the p-series of our two deformations. They are related by h ◦ [p]′(t) =

[p]′′ ◦ h(t). Since f (x, y) has height n, Lemma A.3.1 dictates that the images of [p]′(t) and [p]′′(t)

must be of the form

[p]′(t) = a2εt
2 + a3εt

3 + · · · + apn−1εt
pn−1 + vnt

pn + · · · ,

and similarly for [p]′′(t). At this point we simply plug the expressions for h(t), [p]′(t) and [p]′′(t)

into the relation h ◦ [p]′(t) = [p]′′ ◦ h(t) to find that, for k = 1, . . . , n − 1, the pk-th coefficients of

[p]′(t) and [p]′′(t) coincide.

Step 2.3. The map H is a homomorphism. Given two deformations over k[ε]/(ε2), represent

them by two formal group laws over k[ε]/(ε2) corresponding to two maps L(p) → k[ε]/(ε2), or

equivalently, to a single map L(p) → k[ε]/(ε2) ×k k[ε]/(ε2). Compose this with the addition map.

Essentially by definition, this just results in the addition of the images of the ti ∈ L(p).

Step 2.4. H is surjective. This is easy to see: L(p) is isomorphic to a free polynomial algebra

Z(p)[t1, t2, . . .], so we can choose to lift tpk−1 to a map L(p) → k[ε]/(ε2) in whatever way we want.

Step 2.5. We show that the kernel of H is trivial, so that it is injective. It suffices to show

that a deformation f ′(x, y) of f (x, y) over k[ε]/(ε2) of height exactly n must be isomorphic to the

trivial deformation. By Theorem 3.2.5 (whose application strictly requires the variables ci to be

zero), the map of affine schemes Isok[ε]/(ε2)
(
f (x, y), f ′(x, y)

)
→ Spec k[ε]/(ε2) is pro-étale, so that in

particular it is formally smooth; this allows us to construct the dashed lift in the diagram
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Spec k Isok[ε]/(ε2)
(
f (x, y), f ′(x, y)

)
MFG

Spec k[ε]/(ε2) Spec k[ε]/(ε2) MFG ×MFG

∆

Id
(
f (x,y),f ′(x,y)

)
which yields the desired result.

Step 3. We show that the pullback along a surjection of local Artinian algebras remains

preserved by our deformation functor. So let’s say we have a diagram

A′ ×A A′′ A′′

A′ A

p2

p1 q2

q1

of local Artinian rings, along with fixed maps from the residue fields to k, where all maps still

commute. Assume moreover that the map q1 : A′ → A is surjective. We construct a map

P : Def(A′ ×A A′′)→ Def(A′) ×Def(A) Def(A′′), which we’ll verify to be a bĳection in a moment.

Step 3.1. The definition of P is simple. A class in Def(A′ ×A A′′) can always be represented

by a formal group law f (x, y) over A′ ×A A′′, which we can then pull back to formal group laws

p∗1f (x, y) and p∗2f (x, y) over A′ and A′′, and then further to a formal group law over A. Consider the

classes of these formal group laws, and let this be the image of our starting deformation under P.

Step 3.2. The fact that P is well-defined is easy to see. Indeed, if we take two different

representatives of the same class in Def(A′ ×A A′′), then the isomorphism between them just gets

pulled back between isomorphisms in A′, A and A′′.

At this point, it seems reasonable to construct an inverse of P as follows. Start with deforma-

tions over A′, A, and A′′, and represent them by formal group laws, which should correspond to

ring maps from L(p). The universal property of the pullback get us a map L(p) → A′ ×A A′′, whose

class is the desired deformation over A′ ×A A′′. This doesn’t work, because the maps from L(p) to

A′, A and A′′ only commute up to isomorphism. We’ll have to be more careful.

Step 3.3. We first show that P is a surjection. Start with an element ([γ′], [γ′′]) in Def(A′)×Def(A)

Def(A′′). Represent the class [γ′′] by a formal group law γ′′ : L(p) → A′′ over A′′. Represent [γ] by

the pullback of γ′′ along q2, or eqivalently by the composition L(p)
γ′′
−−→ A′′

q2
−−→ A. Finally, represent

[γ′] by choosing a lift of the map L(p) → A along the surjection q1 — this can be done because L(p)

is a free polynomial ring. Essentially by construction we can now define a map L(p) → A′ ×A A′′,

and the class of this formal group law is the desired deformation.

Step 3.4. We show that P is also an injection. Suppose we have two formal group laws f1(x, y)

and f2(x, y) over A′ ×A A′′ defining isomorphic deformations when pulled back to A′, A and A′′.
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Represent the isomorphism by maps W(p) → A′′, W(p) → A, and W(p) → A′. It may seem as though

the maps need not be compatible with q1 and q2, even though the sources and targets are. But

this turns out not to be the case, as the following claim shows.

Lemma 3.4.4. Let f (x, y) be a formal group law of height n, and let fA(x, y) and f ′A(x, y) be

two deformations of f (x, y) to a local Artin ring A with residue field isomorphic to k. There exists

at most one isomorphism h : fA(x, y)→ f ′A(x, y) defining an isomorphism of deformations. �

Proof of Lemma 3.4.4: We have a pullback diagram

Isok
(
f (x, y), f (x, y)

)
IsoA

(
fA(x, y), f ′A(x, y)

)
MFG

Spec k SpecA MFG ×MFG

∆

By Theorem 3.2.5, the left-most vertical map is pro-étale, and hence in particular formally un-

ramified. As A is a local Artinian ring, the map Spec k → SpecA represents its only point. As

the property of a morphism being formally unramified can be checked fibrewise, it follows that

IsoA
(
fA(x, y), f ′A(x, y)

)
→ SpecA is formally unramified as well. The ring A being local Artinian,

the maximal ideal of A will be nilpotent so that Spec k → SpecA qualifies as an infinitesimal

thickening, and therefore there can exist at most one dashed arrow in the diagram

Spec k IsoA
(
fA(x, y), f ′A(x, y)

)

SpecA SpecA
Id

This proves the claim. �

Step 4. At this point we know that the deformation functor is pro-representable by some

complete local ring R(k, f ). If we check that the deformation functor preserves surjections, then

we know what the complete local ring will be. This step is easy. Given a surjection A′ → A and

a deformation over A corresponding to a map L(p) → A, one can use the fact that L(p) is free to

choose an appropriate lift to a deformation over A′, thus proving the result.

Step 5. We explain how to see that the deformation functor is described by a universal defor-

mation over R(k, f ) = W (k)[[v1, . . . , vn−1]]. Consider the map L(p) → k classifying f (x, y). Choose

an isomorphism L(p) � Z(p)[t1, t2, . . .] such that the image of tpk−1 is precisely vk(f ), for all k. Define

the formal group law funiv(x, y) over R(k, f ) to be any lift of Z(p)[t1, t2, . . .]→ k to W (k)[[v1, . . . , vn−1]]

along the canonical map W (k)[[v1, . . . , vn−1]] → k, so long as this lift sends tpk−1 to the generator

vi ∈ W (k)[[v1, . . . , vn−1]], for k = 1, . . . , n − 1. For any local ring map W (k)[[v1, . . . , vn−1]] → A,

pulling back funiv(x, y) to A yields a deformation over A. This yields a natural transformation from

Hom
(
W (k)[[v1, . . . , vn−1]], ·

)
to Def. As both maps preserve surjections, and the transformation is
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an isomorphism for A = k[ε]/(ε2), the inductive argument in the proof of Theorem 3.4.3 carries

over to prove that the transformation is an isomorphism for all A. �

Aside that we won’t need: The universal formal group law over R(k, f ) gives rise to a map

SpecR(k, f ) → Mn
FG. This map satisfies the hypotheses of Theorem 3.3.4, so that Theorem 3.3.1

almost gives us a homology theory. I say “almost” because the map g : L → R(k, f ) is not graded.

There’s a cheap fix for this. Consider the bigger ring R(k, f )[u±1], where we declare u to have

degree 2, and extend our map g to a graded map L → R(k, f )[u±1], sending a homogeneous

element x of L not to g(x), but to g(x) · u |x |. We may now safely construct our homology theory

X 7→ MU∗(X ) ⊗π∗MU R(k, f )[u±1], denoted En (but also E(n) sometimes, e.g. in [5, Rmk. 9 of

Lecture 21]) and called (completed) Morava E-theory. We remark that, despite its notation, the

construction implicitly depends on a choice of perfect field k and a formal group law of height n

over k.

Let A be a local Artin ring with residue field k. As the elements of A not in k will be nilpotent,

any local ring map R(k, f ) → A inducing an isomorphism on residue fields will factor through

R(k, f )/mN for some N . Consequently, the local ring maps R(k, f ) → A correspond to maps

SpecA → Spf R(k, f ). From this point of view, a map SpecA → Spf R(k, f ) makes sense even if A

is not a local Artin ring. So take any ring A, and any map SpecA → Spf R(k, f ), which, now by

definition, corresponds to a ring map R(k, f )/mN → A. The universal formal group law on R(k, f )

can be pulled back to R(k, f )/mN , and then further to A. The elements v0, . . . , vn−1 of this formal

group law over A will be nilpotent, and the element vn will be a unit. This yields a morphism

SpecA → M̂n
FG, and as this is valid for all A, we find a morphism π : Spf R(k, f ) → M̂n

FG of fibred

categories over Aff.

Theorem 3.4.5. The morphism π : Spf R(k, f )→ M̂n
FG is fpqc. �

The above result is based on [4, Prop. 7.11], but we fill in a small gap by showing that π is

representable by schemes rather than by formal schemes.

Proof: We need to show that π is representable by schemes, so that we can make sense of

flatness, surjectivity, and quasi-compactness of π. This will prove the result. To prove repre-

sentability, pick a morphism SpecA → M̂n
FG, and localize if needed to ensure that the morphisms

is represented by a formal group law g(x, y) over A that is almost of height n. We will attempt to

study the 2-fibre product Spf R(k, f ) ×
M̂n

FG
SpecA.

By definition, a morphism from SpecB into this product should consist of a morphism

π2 : SpecB → SpecA, a morphism π1 : SpecB → Spf R(k, f ), and finally an isomorphism be-

tween π∗1funiv(x, y) and π∗2g(x, y). By Lemma A.3.8, π∗1funiv is almost of height n, and in fact there

exists some N such that the coefficients v0, . . . , vn−1 of π∗1funiv satisfy vN0 = vN1 = · · · = vNn−1.

In turn, this tells us that there exists a yet larger N ′ such that the map π1 will always factor

68



through SpecR(k, f )/mN
′

. In fact, this integer N ′ does not depend on our initial choice of B,

but only on our choice of morphism SpecA → M̂n
FG. It follows that we may as well consider

the fibre product SpecR(k, f )/mN
′

×
M̂n

FG
SpecA. By the first part of Lemma A.3.8, this is in fact

isomorphic to SpecR(k, f )/mN
′

×MFG SpecA. But by Lemma 3.1.1 this is just the affine scheme

Spec
(
R(k, f )/mN

′

⊗L W ⊗L A
)
.

We now show that π is flat. We keep the notation as above. Consider the diagram

Spf R(k, f ) ×
M̂n

FG
SpecA SpecR(k, f ) ×MFG SpecA SpecA

SpecR(k, f )/mN
′

SpecR(k, f ) MFG

(∗)

Note that we are talking about the spectrum of R(k, f ) rather than the formal spectrum. By our

discussion above, the product in the top left corner is in fact the 2-fibre product of the outer

diagram. We claim that the map (∗) is an isomorphism. This would in fact prove the result;

indeed, the map SpecR(k, f ) →MFG is flat by Theorem 3.3.4 hence so is the lifted map. To prove

the claim, consider any map SpecB → SpecR(k, f ) ×MFG SpecA. By definition, this should be a

map SpecB → SpecR(k, f ), a map SpecB → SpecA, and an isomorphism between the two resulting

formal group laws. Invoking Lemma A.3.8 again, it follows that the map SpecB → SpecR(k, f )

must factor through SpecR(k, f )/mN
′

.

We now check that π is quasi-compact and surjective. Quasi-compactness is immediate as it

is affine. As for surjectivity, notice that surjectivity may be checked stalk-locally, so that we need

only check that the map π′ in the 2-pullback diagram

SpecK ×
M̂n

FG
Spf R(k, f ) SpecK

Spf R(k, f ) M̂n
FG

π′

q

π

is surjective, and in fact, after localizing if needed, we may assume that the morphism q represents

a formal group law over K. Now, as K is a field, it has no zero-divisors, so any formal group law

almost of height n, is in fact of exactly height n. The morphism q thus factors through Mn
FG. Now,

we assert that we have a pullback diagram

Spec k Mn
FG

Spf R(k, f ) M̂n
FGπ
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Before we verify this assertion, we explain how this will prove the theorem. In Theorem 3.2.6

we learned that Mn
FG has a single geometric point so that the top horizontal morphism must be

surjective. Thus, if we base-change further to the map π′, we should still have surjectivity.

To prove our assertion, simply notice that any morphism SpecB → Spf R(k, f )×
M̂n

FG
Mn

FG should

consist of a map π1 : SpecB → Spf R(k, f ) and a formal group law over B of height exactly n along

with an isomorphism from π∗1funiv to this formal group law. The pullback π∗1funiv must then also be

of height exactly n. It follows that B will factor through SpecR(k, f )/m, which is precisely Spec k.

This shows the desired result. �

In the next chapter, we will be interested in sheaves over M̂n
FG. Thanks to fpqc descent of

quasi-coherent sheaves (Example 2.4.1) the existence of the fpqc morphism π will help us in

understanding them better.
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Chapter 4

The KU(p)-local stable homotopy

category

Having introduced the necessary language from homotopy theory and algebraic geometry, and

having investigated the structure of the moduli stack of formal groups, we finally reap the fruits

of our work by applying it to the study of the KU(p)-local stable homotopy category. This category

was first systematically studied by Bousfield in the 1970s. We give an overview of some of his

results in the first section. After that we will see how we can use the work of the previous chapters

to approach Bousfield’s results from a new perspective.

4.1 Overview of Bousfield’s results

In 1979, Alridge Bousfield published a paper, [2], in which he investigated the algebraic struc-

ture of the KU(p)-local stable homotopy category, which we briefly came across in Example 1.4.11.

The goal of this section is to briefly summarize some of the results of his paper. As we proved

in Lemma 3.3.11, E(1) and KU(p) are Bousfield equivalent so that their localized homotopy cat-

egories coincide. Bousfield was already aware of this when he wrote his paper, and he chose

to consider both points of view. We will only summarize the parts involving E(1), as this is the

perspective we can revisit in the next section.

The ‘starting point’ of Bousfield’s paper is the following well-known result, which is discussed

in Section 8, and about which more can be found in [9, Section 2.2] and [13, Ch. 19].

Theorem 4.1.1 (E(1)-Adams Spectral Sequence). For any two spectra X and Y , there exists

a strongly convergent spectral sequence

Es,t2 � Exts,tE(1)–Comod
(
E(1)∗(X ), E(1)∗(Y )

)
⇒ [LE(1)X, LE(1)Y ]∗ .
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Here Exts,t is the t-th graded part of the s-th graded Ext-group, and E(1)–Comod is the category

of graded(!) comodules over the Hopf algebroid
(
π∗E(1), Ẽ(1)∗E(1)

)
. �

The above theorem tells us that, on a vague level, we understand the E(1)-local homotopy

category (and hence the KU(p)-local homotopy category) as soon as we understand the graded Ext

groups Exts,tE(1)–Comod
(
E(1)∗(X ), E(1)∗(Y )

)
of all E(1)-local spectra X and Y .

As it turns out, if the prime p is odd, then the second page of the spectral sequence has a very

simple structure. In Section 7 of his paper, Bousfield shows that, for odd primes p, the category

of E(1)-comodules has homological dimension at most 2. To show this, Bousfield chooses to work

with a different category, which he denotes by B(p)∗, and which he later, in Section 10, proves

to be equivalent to the category of comodules. The construction of B(p)∗, first given in Section 3

and revisited in Section 5, is rather complicated, but their definitions are motivated by the formal

properties of the stable Adams operations — something which Bousfield elaborates on in Sections 2

and 4.

Let’s expand on the construction of the category B(p)∗. Write Γn for the quotient of the

unit group (Z/pn+1)∗ by its (unique) subgroup of order p − 1. Note that there’s a canonical map

Z∗(p) → (Z/pn+1)∗, which we may compose with the quotient map to Γn. This may be different from

the canonical map Z∗(p) → (Z/pn)∗.

Let M be a module over the group ring Z(p)[Z∗(p)]. We may view it as a Z(p)-module along with

operations ψk : M → M for all k ∈ Z∗(p). We define B(p)f to be the full subcategory of Z(p)[Z∗(p)]–Mod

consisting of those M for which the following holds.

� Viewed as a module over Z(p), M is finitely generated;

� for all m ≥ 1, the action of Z∗(p) on M/pmM factors through the map Z∗(p) → ΓN for some

large enough N ;

� the vector space M ⊗Z∗(p)
Q admits an eigenspace decomposition into

⊕
j∈ZWj such that,

for w ∈ Wj, and k ∈ Z∗(p), we have (ψk ⊗ Id)(w) = kj(p−1)w, where we invoke the Z(p)-module

structure on the right-hand side.

Bousfield argues that B(p)f is closed under finite sums, taking subobjects and taking quotients,

so that it is in fact an abelian category. He goes on to define B(p) to be the full subcategory of

the category of Z(p)[Z∗(p)]-modules consisting of those M such that, for all x ∈ M , the Z(p)[Z∗(p)]-

submodule (x) lies in B(p)f . This, too, is an abelian category.

We are now ready for the definition of B(p)∗. IfM is a Z(p)[Z∗(p)]-module, then for all i ∈ Zwe may

write T iM for the Z(p)[Z∗(p)]-module whose underlying Z(p)-module is M, but where ψk : T iM → T iM

is ki · ψk : M → M. If M lies in B(p), then so does T iM. We define B(p)∗ to be the abelian

category whose objects are collections {Mn}n∈Z of objects Mn in B(p) along with isomorphisms

between Tp−1Mn and Mn+2p−2 for all n (the isomorphisms being part of the data); the morphisms
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are defined as you would expect. For future reference, we attach a number to the claim that B(p)∗
is equivalent to the comodule category.

Theorem 4.1.2. The category B(p)∗ as constructed above is equivalent to the category of

graded E(1)-comodules. �

We now look at how Bousfield computes the homological dimension of this category. The idea

is to first deal with B(p), and then (quite easily) extend to B(p)∗. Starting in Section 6, Bousfield

constructs a functor U : Z(p)–Mod→ B(p). We remark that there’s also a functor Z(p)[v±1]→ B(p)∗
carrying the same notation. Now, we won’t go over the construction, but it is useful to mention

that is is the right adjoint of the forgetful functor in the other direction. This allows us to prove

the following result, found as Prop. 7.3.

Lemma 4.1.3. For G a Z(p)-module and L an object in B(p), we have Exts
B(p)(L,U(G)) �

ExtsZ(p)
(L, G). �

Proof: Bousfield relies on a characterization of injective objects to prove the result. This isn’t

needed: as U is a right adjoint, it is left-exact and preserves injectives, so we may apply U to an

injective resolution of G to obtain an injective resolution of U(G). Together with the adjunction

isomorphism this yields the result. �

To compute Exts
B(p) for more general objects in B(p), Bousfield constructs, for any object M

in B(p), a short exact sequence

0 M U(M) U(M) M ⊗ Q 0

where U is being applied to the underlying Z(p)-module structure of M. This allows him to relate

Exts
B(p)(L,M) to Exts

B(p)
(
L,U(M)

)
, the latter being known thanks to the above lemma, via a spectral

sequence. Having done this, he concludes what he aimed to show, namely that Exts
B(p)(L,M)

vanishes for s > 2.

It should be remarked that the result fails for p = 2, although Bousfield does not point out

why this is the case. The key issue is that the group Γn which we defined in our definition of B(p)∗
is no longer cyclic if p = 2; because of this, the simplified construction of B(p)∗ as outlined in

Section 5 no longer holds.

The low homological dimension causes the Adams spectral sequence to degenerate at the third

page, and it is this degeneration that allows Bousfield to introduce an invariant that is capable

of distinguishing E(1)-local spectra, and which thus ‘governs’ the entire structure of the E(1)-

local stable homotopy category. To be more precise, in Section 8 Bousfield defines an invariant kX
associated to every E(1)-local spectrum X such that two E(1)-local spectra X and Y are isomorphic

(in the homotopy category) if and only if E(1)∗(X ) � E(1)∗(Y ) and kX = kY . This invariant kX turns

out to be a particular element of Ext2,1E(1)–Comod
(
E(1)∗(X ), E(1)∗(X )

)
.
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The ‘converse’, so to speak, of the result mentioned above is also valid. By ‘converse’ I

mean the following. In Thm. 9.1, it is shown that, for any E(1)-comodule M, and any object

κ ∈ Ext2,1E(1)–Comod(M,M), one can find an E(1)-local spectrum X such that E(1)∗(X ) is isomorphic,

as a comodule, to M, and the invariant kX is precisely κ. This essentially completes the algebraic

characterization of the E(1)-local, and hence also the KU(p)-local stable homotopy category.

4.2 A fracture square

The goal of this section and the next one is to use the results of the previous chapters to shed

new light on the constructions we come across in the last section. The primary goal is to give a

geometric interpretation of Theorem 4.1.2, so that any further construction involving B(p)∗ may

be reconsidered from a geometric point of view.

We begin by outlining our plan. As Bousfield also observed, p-local complex K-theory is

Bousfield equivalent to Morava E-theory E(1) — something we proved in Lemma 3.3.11. Conse-

quently, the KU(p)-local stable homotopy category is the same as the E(1)-local stable homotopy

category, which means that we may as well look at E(1) instead of KU(p). In particular, we can

turn our attention to the category of graded E(1)-comodules rather than the category of graded

KU(p)-comodules.

In Section 2.5, we learned that comodules over a flat Hopf algebroid may equally well be viewed

as quasi-coherent sheaves over the corresponding stacks, and by Lemma 3.3.7, the algebraic stack

associated to E(1) is M<2
FG. Here, the comodules are ungraded, but the passage from ungraded to

graded comodules will be dealt with later on. For now, let’s focus on the category QCoh(M<2
FG). For

the sake of keeping things general, let’s focus on QCoh(M<n+1
FG ), passing to the case n = 1 once

that’s needed.

We can essentially split up M<n+1
FG into two parts: the closed substack Mn

FG, and the open

complement M<n
FG. Geometrically speaking, it is reasonable to believe that sheaves on M<n+1

FG

should correspond to sheaves on Mn
FG and M<n

FG, along with an overlap condition. This can be

made precise, which has lead to the fracture square in [4, Thm. 8.17]. Unfortunately, this result

only manages to compare the derived categories of quasi-coherent sheaves, which is not enough

for our purposes; moreover, the proof relies on a highly non-trivial result due to Greenlees and

May. The main goal of this section is to prove a version of the theorem that does not pass to

derived categories.

The starting point of this section is the following algebraic result, which is a special case of [11,

Tag 05ER].
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Lemma 4.2.1. Let R be a Noetherian commutative ring, and let R̂ be the completion of R at

an element f . Then we have a Cartesian square of categories

QCoh(SpecR) QCoh(Spec R̂)

QCoh(SpecRf ) QCoh(Spec R̂f )

defined by the pullbacks of the obvious corresponding ring maps. More generally, let I be a

finitely generated ideal of R, write U for the open complement of V (I) in SpecR and Û for the open

complement of V (I) in Spec R̂ (where the elements of I are now interpreted as lying in R). Then we

have a Cartesian square

QCoh(SpecR) QCoh(Spec R̂)

QCoh(U ) QCoh(Spec Û )

defined in the same way. �

If the modules are coherent rather than quasi-coherent (or equivalently, since everything is

Noetherian, finitely generated), then by [11, Tag 00MA], the horizontal maps are given by the

completions M 7→ M̂.

Example 4.2.2. Take R to be SpecZ, and let f be a prime p in Z. Then R̂ = Zp, while

R̂f = Qp. The above result then tells us that finitely generated Z-modules correspond precisely

to finite-dimensional Q-vector spaces and finitely generated Zp-modules satisfying a compatibility

relation.

The lemma is particularly valuable when it is interpreted geometrically. The vanishing set

of f defines a closed subscheme of SpecR. The scheme SpecRf is precisely the open complement,

while Spec R̂, being, in a sense, a certain limit of the SpecR/f nR for various n, is the closed

subscheme along with infinitesimal information about its neighbourhood. The lemma essentially

tells us that functions on SpecR are precisely functions on the closed subscheme and functions

on the open complement, satisfying an overlap condition on the infinitesimal neighbourhood of

the closed subscheme.

This point of view tells us that the result is local in nature, and should consequently generalize

to schemes, and hopefully further to certain algebraic stacks. Proving this will be the main goal

of this section. We expect something of the following form to be true. Let M be a stack satisfying

a notion of being Noetherian. Write M̂ for the completion defined at a principal ideal sheaf I ,

or more generally, a finitely generated ideal sheaf, where ‘finitely generated’ means ‘fpqc-locally
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finitely generated’. Then coherent sheaves on M are precisely coherent sheaves on M̂ and coherent

sheaves on the open complement D(I ), satisfying an overlap condition on the intersection.

At this point we remark that the envisaged generalization is not really the correct generalization

of Lemma 4.2.1. As we also pointed out in Section 2.4, the scheme Spec R̂ is not the formal

completion of SpecR at I, but the spectrum of the completion of R at I. Rather, the formal

completion is Spf R̂. There are two ways to fix this issue. Either we find the correct stack-theoretic

generalization of Spec R̂, or we find a variant of Lemma 4.2.1 involving Spf R̂. The first approach

is unfeasible, however: as far as the author is aware, Spec R̂ does not admit a simple expression

from the functor-of-points perspective. We therefore choose to take the second approach. The

next two lemmas will help us out.

Lemma 4.2.3. Let R be any commutative ring, and let Spf R̂ be the formal completion of

SpecR at the closed subscheme SpecR/I. Then we have a limit diagram of categories

QCoh(Spf R̂)

QCoh(SpecR/I) QCoh(SpecR/I2) QCoh(SpecR/I3) · · ·

in the sense that a quasi-coherent sheaf over Spf R̂ corresponds precisely to a collection of R/In-

modules Mn, for n ≥ 1, such that Mn � Mn−1 ⊗R/In−1 R/In, and a morphism of quasi-coherent

sheaves over Spf R̂ corresponds to compatible morphisms of R/In-modules. �

Proof: From our definition of quasi-coherent sheaves over an algebraic stack (of which quasi-

coherent sheaves over Spf R̂ are a special case), every quasi-coherent sheaf is determined by

considering the pullback along all possible maps SpecA → Spf R̂, along with potentially non-

trivial isomorphisms, which we need not worry about as Spf R̂ is fibred in sets. By our definition of

formal completion, every such map is precisely a map SpecA → SpecR/In for some large enough n.

Thus our sheaf on Spf R̂ determines and is uniquely determined by the pullbacks along the maps

SpecR/In → Spf R̂. �

Lemma 4.2.4. Let R be a Noetherian ring, and let I be a finitely generated non-trivial ideal

in R. Then we have an equivalence of categories Coh(Spec R̂) � Coh(Spf R̂). �

Proof: The functor Coh(Spec R̂) → Coh(Spf R̂) is described as follows. For any coherent

sheaf M on Spec R̂, we write Mn for the pullback to SpecR/In along the map of rings R̂ → R̂/InR̂ �

R/InR. By Lemma 4.2.3, this uniquely determines a quasi-coherent sheaf on Spf R̂, which is easily

seen to be coherent. This functor is essentially surjective: given a sheaf on Spf R̂, one can obtain

a sheaf on Spec R̂ by taking the various R/In-modules, viewing them as R-modules, and taking

their categorical limit. In the same way one shows that the functor is full.
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We verify that the functor is faithful. Take a morphism f : M → N between two coherent

R̂-modules such that the induced morphisms M/InM → N/InN are zero, Any element of M gets

mapped into the intersection of the various InN . The Krull intersection theorem asserts that there

exists an x in I such that (1 + x) ·
⋂
n I

nN = 0. The element 1 + x is a unit in R̂ (although not

necessarily in R — we really need the R̂-module structure at this point). Consequently, we may

write f (m) = (1 + x)−1(1 + x)f (m) = 0 and the result follows. �

Example 4.2.5. The above lemma fails if we try to generalize to the non-finitely generated

situation. Let the notation be as in Example 4.2.2. The functor QCoh(SpecZp) → QCoh(Spf Zp),

defined in the same way as the functor in the above proof, sends the non-coherent Zp-module Qp
to 0.

The above result now tells us that we can replace Coh(Spec R̂) in Lemma 4.2.1 with Coh(Spf R̂).

We’d expect that we can do something similar with Coh(Spf R̂f ). But unfortunately, this causes

problems: the open complement of the closed subscheme V (f ) of Spf R̂ is empty, both set-

theoretically and functorially.

It may seem that all hope is lost, but there’s reason to believe that our goal can still be

achieved. Lemma 4.2.1 is fundamentally about certain categories of sheaves, and only secondarily

about the underlying schemes that define these sheaf categories. Just because our naive gener-

alization of the underlying spaces to the level of stacks seems to fail, it doesn’t necessarily mean

that the sheaf categories cannot be realized in some other way. This is what we turn to now.

We simply change the way we define our localizations and completions, and find that this new

approach will give us the required categories of sheaves.

Let M be an algebraic stack. We will usually view M as a fibred category over Aff, and we also

write Aff/M to explicitly refer to this category. The fpqc topology on Aff lifts to a topology on Aff/M.

We define a structure sheaf on M to be a sheaf O of rings defined on the site M. The standard

example is given by the ‘identity functor’, sending an object SpecA →M in the fibred category M

to the ring A. In analogy with ringed spaces, let us call any pair (M,O) consisting of an algebraic

stack along with a sheaf of rings a ringed stack.

We define a quasi-coherent O-module F over a ringed stack (M,O) is an O-module presheaf

satisfying certain properties. More precisely, it consists of the following data.

� For every object ξ in the fibre M(SpecR) (viewing M as a fibred category over Aff), a choice

of O(ξ )-module, denoted F (ξ );

� for any two objects ξ ∈M(SpecR), ξ ′ ∈M(SpecR′), and any morphism f : ξ ′ → ξ in M lying

over the morphism pM(f ) : SpecR′ → SpecR, we want a pullback map resf : F (ξ )→ F (ξ ′).

We ask for this data to satisfy the following conditions.
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� The restriction maps behave well with respect to the module structures, in the sense that

if f : ξ ′ → ξ is a morphism, we want the diagram

F (ξ ) ⊗ O(ξ ) F (ξ )

F (ξ ′) ⊗ O(ξ ′) F (ξ ′)

resf ⊗O(f ) resf

to always commute;

� the restriction map resf : F (ξ ) → F (ξ ′) gives rise to a morphism φf : F (ξ ) ⊗O(ξ ) O(ξ ′) →

F (ξ ′), and we ask for this map to be an isomorphism of O(ξ ′)-modules;

� we ask for the isomorphisms φf to satisfy a cocycle condition: if f : ξ ′ → ξ and g : ξ ′′ → ξ ′

are two morphisms, the diagram

F (ξ ′′) F (ξ ′) ⊗O(ξ ′) O(ξ ′)

F (ξ ) ⊗O(ξ ) O(ξ ′′) F (ξ ) ⊗O(ξ ) O(ξ ′) ⊗O(ξ ′) O(ξ ′)

pM(g)

pM(f ◦g) pM(f )⊗IdO(ξ ′)

∼

should commute.

We say our O-module F is coherent if moreover the various F (ξ ) are coherent as O(ξ )-modules.

A morphism of (quasi-)coherent O-modules is just a natural transformation of functors. In this

way, the quasi-coherent O-modules over (M,O) form a category that we denote by QCoh(M,O).

Lemma 4.2.6. Suppose the structure sheaf O preserves faithfully flat ring maps. That is, if

A → B is faithfully flat, then the ring map O(A)→ O(B) is also faithfully flat. Then quasi-coherent

O-modules over (M,O) are automatically sheaves over the fpqc topology of the fibred category

defining M. �

Proof: Let F be a quasi-coherent O-module over (M,O). Take an fpqc covering {fi : ξi → ξ }

lying over an fpqc covering {pM(fi) : SpecRi → SpecR}. We have to show that the diagram

F (ξ )
∏
i∈I

F (ξi)
∏
i,j∈I

F
(
ξi ×ξ ξj

)
is an equalizer diagram. As F is quasi-coherent, the diagram is isomorphic to the diagram

F (ξ )
∏
i∈I

F (ξ ) ⊗O(ξ ) O(ξi)
∏
i,j∈I

F (ξ ) ⊗O(ξ ) O(ξi) ⊗O(ξ ) O(ξj)

At this point we recall from Example 2.2.1 that we may impose the requirement that fpqc coverings

be finite, which we do from this point on. As tensor products commute with finite products, the

above diagram can be written as

F (ξ ) ⊗O(ξ ) O(ξ ) F (ξ ) ⊗O(ξ )

∏
i∈I

O(ξi) F (ξ ) ⊗O(ξ )

∏
i,j∈I

O(ξi) ⊗O(ξ ) O(ξj)
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The map O(ξ ) →
∏
i O(ξi) is faithfully flat so that this diagram is an equalizer diagram by virtue

of [11, Tag 023M]. �

There’s only one important example that we’ll need. Let O be the ‘usual’ structure sheaf

on an algebraic stack. We want to define a completed structure sheaf Ô. If all goes right, the

category QCoh(M, Ô) should coincide with QCoh(Ô). If this is true, then for our purposes, (M, Ô)

and M̂ are pretty much the same. But the difference is that M̂ has ‘lost’ some objects, whereas

the underlying stack of (M, Ô) hasn’t. When it comes to making sure that intersections don’t get

empty, the latter seems like a safer option.

Perhaps the reader may wonder why this is the only example we’ll need. What about localiza-

tion? Given a structure sheaf O on an algebraic stack M, and a finitely generated ideal sheaf I

on M, it turns out that we can also make sense of the localized sheaf OI , and indeed it holds

quite generally that QCoh(M,OI ) is equivalent to QCoh(U), where U is the open complement of

the closed substack defined by I . As it turns out, however, the completion suffices.

Example 4.2.7. Let M be an algebraic stack, and denote by O its usual structure sheaf.

Let I be a finitely generated ideal sheaf on M. We’d like to define a completion Ô. We first define

a presheaf Opre as follows. After localizing if needed, an object π in M(SpecA) gets sent under I

to a finitely generated ideal I of A. We define Ôpre(π) to be the completion Â of A at the ideal I,

and we define a morphism π → π′ above a ring map A′ → A to be sent to the completed ring map

Â′ → Â.

If all the rings involved were Noetherian, then Ôpre would preserves faithful flatness, and

in particular it would be a sheaf. But in general this need not hold anymore, and rarely will it

happen, perhaps barring the illusive empty scheme, that M won’t admit at least some A-valued

point for a non-Noetherian ring A. So we need to sheafify in order to ensure that Ô is a sheaf of

rings on Aff/M.

Even after sheafifying, there’s no reason to believe that Ô preserves faithfully flat ring maps.

Consequently, the hypothesis of Lemma 4.2.6 may fail, and quasi-coherent sheaves over the ringed

stack (M, Ô) behave quite badly. To remedy this, we need to restrict the fibred category on which

we define our sheaves. This brings us to the following definition.

Let M be an algebraic stack, and write Aff/M for the fibred category over Aff defining M.

The small fppf site, denoted Fppf/M, will be the full subcategory of Aff/M consisting only of

the faithfully flat maps SpecA → M, endowed with the restricted Grothendieck topology coming

from Aff/M. That means we have an fppf site with the finite fpqc topology. (By ‘finite’, we mean

‘allowing only finite coverings’ — a condition we needed to impose in the proof of Lemma 4.2.6.)

Every sheaf on Aff/M restricts to a sheaf on Fppf/M, although the discussion in the example
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above indicates that perhaps the converse may not hold. Let us write QCohfppf(M,O) instead of

QCoh(M,O) whenever we’re dealing with quasi-coherent sheaves on the small fppf site only.

Lemma 4.2.8. Let R be a Noetherian ring, and let I be a finitely generated ideal of R.

Interpreting SpecR as a stack, we may define the small fppf site Fppf/ SpecR as above. Take

the usual structure sheaf O on SpecR again, and define Ô to be the completion of O at I as

in Example 4.2.7. Then QCohfppf(SpecR, Ô) is equivalent to QCoh(Spec R̂). �

Proof: If SpecA → SpecR is a faithfully flat map, then R being Noetherian implies that A is

Noetherian. Consequently, all affine schemes occurring in Fppf/ SpecR will be Noetherian. For

any Noetherian ring A, the completion M̂ of an A-module M is just M ⊗A Â; moreover, faithfully

flat maps between Noetherian rings are preserved under taking completions, so that Lemma 4.2.6

applies. This makes life easier. Given an R̂-module M, one now easily defines an object of

QCohfppf(SpecR, Ô) sending an A-valued point SpecA → SpecR to the O(A) = Â-module M ⊗R̂ Â.

Conversely, every quasi-coherent sheaf is, up to a potentially non-trivial isomorphism, defined in

this way. �

With the above results in place, we can now define completions of stacks without having to

mess with the underlying functor of points. In particular, we can make sense of the completion of

the localization without having to worry about the underlying functor of points becoming empty.

We thus have the language needed to lift Lemma 4.2.1 to the generality of algebraic stacks.

At this point, the existence of an atlas is crucial, as this allows us to descend to the level

of schemes whenever we are talking about sheaves over algebraic stacks. To make this precise,

we work in a rather general setting — the generality is needed later. We consider the situation

of an fpqc morphism X → Y of algebraic stacks. Our starting point is the descent property of

quasi-coherent sheaves over schemes, wish we discussed in Example 2.4.1, and goal is to extend

this statement to stacks. In order to do this, we need a stack-theoretic analogue of descent data

of sheaves. Denote by p1 and p2 the projection maps from the 2-fibre product X ×Y X to the

components. Define descent data at Y to be a choice of quasi-coherent sheaf F on X, and an

isomorphism φ : p∗1F → p∗2F , such that on three-fold 2-fibre products, the isomorphism satisfies

the usual cocycle conditions. A morphism of descent data is defined to be a morphism of the

quasi-coherent sheaves on X that are compatible with the rest of the data.

Lemma 4.2.9. Let X → Y be an fpqc morphism of algebraic stacks. Then the category

QCoh(Y) is equivalent to the category of descent data of sheaves at Y as defined above. �

Proof sketch: Some details will be omitted, like the verification of certain naturality conditions.

Suppose we start out with descent data of sheaves at Y, consisting of a sheaf F on X, and an

isomorphism φ between p∗1F and p∗2F satisfying the cocycle conditions. Our goal is to reconstruct
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the quasi-coherent sheaf G on Y. We first look at the level of objects: given a morphism f : T → Y,

where T is a scheme, we wish to find f ∗G .

Write p1 and p2 for the projections from X ×Y T to X and T , respectively. By relative repre-

sentability, p2 is an fpqc morphism of schemes. The descent data at Y contains a quasi-coherent

sheaf F on X, which pulls back to a quasi-coherent sheaf p∗1F on T . Moreover, the compatibility

relations in the descent data at Y pulls back to compatibility relations for p∗1F . To see this, we

remark that there’s a canonical isomorphism between (X ×Y T ) ×T (X ×Y T ) and (X ×Y X) ×Y T , so

that the isomorphism φ on X ×Y X pulls back to the fibre product of X ×Y T over T . In the same

way, the cocycle conditions on triple overlaps pull back as well. Thus we have found descent data

of sheaves at T , which uniquely assemble into a sheaf f ∗G on T .

Now suppose we have an isomorphism above the fibre Y(T ), say between f : T → Y and

g : T → Y. Our goal is to establish a natural isomorphism between f ∗G and g∗G . We have two

fibre products, X ×Y,f T and X ×Y,g T , and they are canonically isomorphic. Both have projection

maps to X, say p1,f and p1,g. They are not the same, but are isomorphic when composed with

the map to Y. This gives us a well-defined map from the 2-fibre product X ×Y T to X ×Y X. The

isomorphism φ on X ×Y X pulls back to an isomorphism between the two quasi-coherent sheaves

p∗1,fF and p∗1,gF on X×Y T . This isomorphism is compatible with the compatibility isomorphisms

that are part of the descent data, and so it assembles to a well-defined isomorphism between f ∗F

and f ∗G . �

A few remarks about this lemma. First, the most important special case of the lemma is

when X is a scheme X . This allows us to reduce statements about quasi-coherent sheaves on

algebraic stacks to statements about quasi-coherent sheaves on schemes. We’ve implicitly used

this special case in Section 2.5 already. Second, we point out that the proof hardly uses the

definition of quasi-coherent sheaves. Really, the lemma would work for any notion that satisfies

fpqc descent. In particular, suppose O is a sheaf of rings on Aff/Y that preserves faithfully flat

ring maps. Then Lemma 4.2.6 tells us that quasi-coherent O-modules are fpqc sheaves, so our

lemma carries over to this situation. Let’s write this down for concreteness.

Lemma 4.2.10. Let f : X → Y be an fpqc morphism of algebraic stacks, and let O be a

structure sheaf on Y, which we assume to preserve faithfully flat ring maps. Then the category

QCoh(Y,O) is equivalent to the category of descent data of quasi-coherent O-modules at Y. In

particular, giving a quasi-coherent O-module F on Y is equivalent to giving a quasi-coherent f ∗O-

module G on X along with an isomorphism φ : p∗1G
∼
−→ p∗2G satisfying the cocycle conditions. �

So we need an atlas when generalizing Lemma 4.2.1, but even then, we cannot hope our

generalization works for algebraic stacks. Indeed, when discussing completions of the structure

sheaf, we saw that we needed quite stringent finiteness conditions for our constructions to make

sense. Most notably, we required all our (affine) schemes to be Noetherian. When passing to
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algebraic stacks, we will need a similar such constraint. We use the following definition to make

this precise. Let M be an algebraic stack. We shall call M Noetherian if it admits an fppf (not

just fpqc) covering SpecA →M by a Noetherian affine scheme SpecA.

Lemma 4.2.11. Let M be a Noetherian algebraic stack, and let Ô be the completion of

the structure sheaf at a finitely generated ideal sheaf I on M. Then Coh(M̂) is equivalent to

Cohfppf(M, Ô). �

Proof sketch: To simplify the discussion, I will only sketch the proof when M is in addition

an Adams stack, so as to ensure that fibre products of affine schemes over M remain affine. In

principle, this is probably not necessary at all — it’s just that we’ve worked with affine schemes

throughout the above discussion. Had we worked in the generality of arbitrary schemes, the

lemma would likely easily generalize to arbitrary Noetherian algebraic stacks.

Take an fppf atlas of our stack M by SpecA, where A is a Noetherian ring. As M is assumed

to be an Adams stack, this atlas is moreover affine, so that the pullback SpecA ×M SpecA will be

a Noetherian affine scheme, say Spec Γ. The pullback of I to SpecA is a finitely generated ideal

sheaf, at which we may complete A. The formal completion M̂ admits a map from Spf Â. This

map defines a relatively representable fppf covering of M̂, whose pullback along itself will be Spf Γ̂.

Now apply Lemma 4.2.9 to the case X = Spf A and Y = M̂ to find that sheaves on M̂ are sheaves

on Spf A with a compatibility relation on Spf Γ.

Now look at (M, Ô). The pullback of Ô along the maps SpecA → M and Spec Γ → M give

completions of the structure sheaves of A and Γ, respectively. As we restricted our attention

to the small fppf site of M, and M is moreover Noetherian, Ô preserves faithful flatness so

that Lemma 4.2.10 applies: a quasi-coherent Ô-module on M is an Ô-module on SpecA with

a compatibility relation on Spec Γ. Now apply Lemma 4.2.8 and Lemma 4.2.4, the latter invoking

our assumption that our sheaves be coherent, to conclude that quasi-coherent Ô-modules are

modules on the small fppf site of Spf A with a compatibility relation on Spf Γ.

We now see that the descriptions almost coincide, the only difference being that we work with

the small fppf site when dealing with (M, Ô). After passing to the atlas, however, this distinction no

longer makes a difference: any quasi-coherent sheaf defined on the small fppf site of a Noetherian

(formal) scheme uniquely specifies a quasi-coherent sheaf on the big site. �

Theorem 4.2.12. Let M be a Noetherian algebraic stack, and let I be a finitely generated

ideal sheaf on M. Write U for the open complement of the closed substack define by I . Then we

have a diagram
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QCoh(M) QCohfppf(M, Ô)

QCoh(U) QCohfppf
(
U, Ô |U

)
that defines a Cartesian square of categories. �

If, moreover, we restrict to coherent sheaves, we may replace Cohfppf(M, Ô) by Coh(M̂) thanks

to Lemma 4.2.11, so that under this restriction, we can truly say that sheaves on M are con-

structed from sheaves on U and on M̂.

Proof sketch of Theorem 4.2.12: The stack M admits an fppf atlas by SpecR, where R is an

affine scheme. The pullback of the ideal sheaf I to SpecR corresponds to a finitely generated

ideal I of R. We have a commutative cube(
D(I), Ô |D(I)

) (
D(I),O)

(
U, Ô |U

)
(U,O)

(SpecR, Ô) (SpecR,O)

(
M, Ô

)
(M,O)

Thanks to Lemma 4.2.1, the back face yields a Cartesian square of categories of quasi-coherent

sheaves. Now use descent (Lemma 4.2.9 and 4.2.10) to describe the quasi-coherent sheaves of

the stacks in the front face in terms of quasi-coherent sheaves of the stacks in the back face. �

There’s a catch. While the stack M<n+1
FG admits an fpqc cover by a Noetherian scheme thanks

to Lemma 3.2.3, the fibre product of this cover with itself over M<n+1
FG is not Noetherian anymore.

Moreover, this tells us that the cover is not fppf. Consequently, Fppf/M<n+1
FG does not contain the

fpqc cover, and in fact, it may well be that it doesn’t contain any object at all.

The solution to our issue lies in Lemma 3.1.2. The stack MFG may not be Noetherian, but

it is the homotopy limit of Noetherian stacks, which are defined by k-buds of formal group laws,

for various k. These stacks have reasonably defined fppf sites, and what’s more, we have the

following result. The proof is reasonably simple and can be found in [4, Thm. 3.25].

Lemma 4.2.13. The truncation maps MFG →MFG〈k〉, as k ranges over the positive integers,

give rise to pullback functors QCoh
(
MFG〈k〉

)
→ QCoh(MFG), which in turn assemble into a single

functor lim
−−→k

QCoh
(
MFG〈k〉

)
→ QCoh(MFG). This functor is faithful and induces an equivalence

on the full subcategories of coherent sheaves. In particular, every coherent sheaf on MFG is the

pullback of a coherent sheaf on MFG〈k〉 for some sufficiently large k. �
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The stacks MFG〈k〉 fit within the framework of Theorem 4.2.12. This raises the question

whether MFG〈k〉 admits a similar filtration into a heights. When we say that a formal group

law f (x, y) is of height ≥ n or < n + 1, we put requirements on the coefficients v0(f ), . . . , vn−1(f )

of f (x, y). For every n, these coefficients v0(f ), . . . , vn−1(f ) are always determined by finitely many

coefficients of the formal group laws f (x, y). Consequently, so long as k is large enough that none

of the relevant coefficients get cut off, being of height ≥ n or < n + 1 makes sense for k-buds. We

thus find the following application of Lemma 4.2.11 and Theorem 4.2.12:

Lemma 4.2.14. Let n be a positive integer, and let k be sufficiently large so that the sub-

stacks M<n+1
FG 〈k〉 and M̂n

FG〈k〉 are well-defined. Then we have a fraction square

Coh
(
M<n+1

FG 〈k〉
)

Coh
(
M<n+1

FG 〈k〉, Ô
)

Coh
(
M<n

FG〈k〉
)

Coh
(
M<n+1

FG 〈k〉, Ô |M<n
FG〈k〉

)
Moreover, Coh

(
M<n+1

FG 〈k〉, Ô
)

is equivalent to Coh
(
M̂n

FG〈k〉
)
. Thus, coherent sheaves on M<n+1

FG 〈k〉

are equivalent to coherent sheaves on M<n
FG〈k〉 and on M̂n

FG〈k〉, along with a suitable overlap

condition. �

Combining this with Lemma 4.2.13, we arrive at the main theorem of this section.

Theorem 4.2.15. We have an equivalence of categories

Coh
(
M<n+1

FG
)
� lim
−−→
k

(
Coh

(
M<n

FG〈k〉
)
×Coh

(
M<n+1

FG 〈k〉,Ô |M<n
FG 〈k〉

) Coh
(
M̂n

FG〈k〉
))

.

In human terms, for every coherent sheaf F on M<n+1
FG , there is some sufficiently large k such

that F is uniquely determined by a coherent sheaf on Coh
(
M<n

FG〈k〉
)
and on Coh

(
M̂n

FG〈k〉
)
satisfying

a compatibility relation. �

This is the fracture square we’ve been dreaming of, albeit at the cost of having to pass to

k-buds, and restricting attention of coherent sheaves. Among other things, the passage to the

category of quasi-coherent sheaves will be dealt with in the next section.

4.3 The category of KU(p)-comodules revisited

Recall that our aim was to find a geometric interpretation of Theorem 4.1.2. Our outline is as

follows. First, in Theorem 4.2.15 we have obtained a decomposition theorem for coherent sheaves

on M<n+1
FG . Our goal, however, is to describe quasi-coherent sheaves. In the first part of this

section, we explain how to pass from coherent sheaves to quasi-coherent sheaves. In hindsight,

we’ll find that this passage corresponds precisely to the passage from B(p)f to B(p) in Bousfield’s

construction.
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Having done that, we will have concluded that the category of quasi-coherent sheaves on M<n+1
FG

can be stated entirely in terms of the category of coherent sheaves on M<n
FG〈k〉 and M̂n

FG〈k〉, still

for k sufficiently large. This tells us that, if we understand the category of coherent sheaves

on M̂n
FG〈k〉, and on M<1

FG〈k〉, then, at least in principle, by induction we can understand the cat-

egory of coherent sheaves on M<n+1
FG for all n as well. This leads us to a study of the coherent

sheaves on M̂n
FG〈k〉 and M<1

FG〈k〉. To study the former we use Lubin–Tate deformation theory as

developed in Section 3.4, while the latter can be tackled directly.

At the end of the journey, we should have a purely algebraic description of the category

of quasi-coherent sheaves on M<n+1
FG , and therefore by Section 2.5 of the category of ungraded

comodules over E(n). At least in principle, that is. The final step is to explain how to pass from

the category of ungraded comodules to graded comodules. In Bousfield’s language, this will mark

the passage from B(p) to B(p)∗.

Let’s start with the first step, which is to express the category of quasi-coherent sheaves

of M<n+1
FG in terms of the category of coherent sheaves. We begin with the following result, which

already suggests the road we will be taking.

Lemma 4.3.1. Let R be a Noetherian ring, and let M be a module over R. Then M is a colimit

over its filtered system of coherent submodules. �

Proof: For Noetherian rings, being finitely generated is equivalent to being coherent. Therefore

if {m1, . . . , mk} is a collection of finitely many elements ofM, the submodule (m1, . . . , mk) generated

by these elements are Noetherian. We can represent all these submodules as a filtered system of

R-modules under inclusion. The colimit over such a system is given by the union of the R-modules

involved, which must be M. �

Notice that we need not take all finitely generated submodules of M. Any collection of sub-

modules whose union is all of M will do just fine. Our goal is now to generalize the above result

to algebraic stacks. We will use Lemma 4.2.9, applied to the case where X is a scheme, to reduce

the proof of the generalization to the above lemma.

Theorem 4.3.2. Let X be an algebraic stack, and assume that it admits an fpqc covering

by a Noetherian affine scheme. Then quasi-coherent sheaves on X are precisely filtered colimits

of coherent sheaves, and in fact, every quasi-coherent sheaf is a filtered colimit over its coherent

subsheaves. �

Proof: It may be useful to first consider what colimits are. As colimits commute with pull-

backs, colimits of quasi-coherent sheaves (and hence of coherent sheaves) over an algebraic stack

have a straightforward definition: if Fi are quasi-coherent sheaves over X, then for any morphism

T → X from a scheme T , the pullback of lim
−−→

Fi is just the colimit of the pullbacks of the Fi .
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The stack X admits an fpqc atlas from an affine scheme SpecR, where R is a Noetherian ring.

Lemma 4.2.9 now tells us that a quasi-coherent sheaf on X is just a quasi-coherent sheaf on

SpecR along with an isomorphism φ of pulled back sheaves on SpecR ×X SpecR. So let’s start

with a quasi-coherent sheaf F , and pull it back to an R-module M. By Lemma 4.3.1, M may be

described as the colimit over a filtered diagram {Mi} of finitely generated submodules. Take one

such submodule Mi . The module Mi along with the restriction φ|Mi form descent data on their own,

thus describing a quasi-coherent sheaf Fi on X. This quasi-coherent sheaf is in fact coherent

thanks to descent of finiteness properties (see [11, Tag 05AY]).

Consider the various Fi constructed in this way, along with their inclusion relations. We

claim that their colimit lim
−−→

Fi is F . We know that, whatever the colimit is, it should be preserved

when pulling back along the atlas, and on the atlas, the colimit is M by construction; moreover,

the (trivial) isomorphism of the two pullbacks of lim
−−→

Fi to SpecR ×X SpecR is the same as that

of M, so that the colimit must in fact be F . �

At this point, we are able to describe quasi-coherent sheaves on M<n+1
FG entirely in terms of

coherent sheaves on M̂n
FG〈k〉 and on M<1

FG〈k〉. The next step is to describe what coherent sheaves

on these two stacks should look like. As the restriction to coherent sheaves won’t be relevant for

this step, we will actually aim describe the quasi-coherent sheaves on both of these stacks, and

we will also discuss how things work for the non-truncated stacks M̂n
FG and on M<1

FG — as it turns

out, the truncation will make little difference.

We begin with M<1
FG, and look at the truncated version in a moment. We proved in Lemma 3.2.4

that M<1
FG is isomorphic, as an algebraic stack, to BGm ×SpecQ. To understand the quasi-coherent

sheaves over this stack, we take a more general approach. Let G be a group scheme acting on a

scheme X , and denote by [X/G] the resulting quotient stack introduced in Example 2.3.2. What

are the quasi-coherent sheaves on X/G?

To answer this question, we introduce some general terminology that will also be useful when

analyzing M̂n
FG. Let F → C be a fibred category, and let G be a group object in C, acting on an

object X in C. Take an object ξ of F(X ). We call it a G-equivariant object if, for all η ∈ F(U ),

HomF(η, ξ ) admits an action of HomC(U,G), and the following two conditions are satisfied.

� For any morphism η′ → η in F above a morphism U ′ → U in C, the induced map

HomF(η, ξ )→ HomF(η′, ξ ) is equivariant with respect to the homomorphism HomC(U,G)→

HomC(U ′, G);

� the function HomF(η, ξ ) → HomC(U, X ) induced by the projection map pF is HomC(U,G)-

equivariant.

We write FG(X ) for the category of G-equivariant objects in F(X ) along with their equivariant

morphisms. The following result can be found as [14, Prop. 3.49].
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Lemma 4.3.3. Let the notation be as above. Write m for the multiplication map G × G → G,

ρ for the action map G × X → X , and write p2 and p23 for the quotient maps G × X → X and

G × G × X → G × X , respectively. Let ξ be an object of F(X ). Then G-equivariant structures on

ξ are in one-to-one correspondence with isomorphisms φ : p∗2ξ
∼
−→ ρ∗ξ in F(G × X ) such that the

diagram

p∗23p
∗
2ξ p∗23ρ

∗ξ

(IdG ×ρ)∗ρ∗ξ

p∗23φ

(m×IdX )∗φ (IdG ×ρ)∗φ

commutes. �

Lemma 4.3.4. Let G be a group scheme acting on a scheme X , and denote by [X/G] the

corresponding quotient stack. Then QCoh([X/G]) is equivalent to the category QCohG(X ) of G-

equivariant quasi-coherent sheaves of X . �

Proof: There’s an obvious morphism q : X → [X/G], which we claim is an fpqc atlas. To

prove this, we differentiate between the prestack [X/G]pre introduced in Example 2.3.2, and the

actual stack [X/G]. The map X → [X/G] factors through [X/G]pre. Take a morphism SpecR →

[X/G]pre corresponding to a map SpecR → X . Looking at the definitions, the 2-fibre product

X ×[X/G]pre SpecR is given by G × SpecR, and the structure map to SpecR is just the quotient

map. This map is clearly fpqc. Now replace [X/G]pre with [X/G]. The 2-fibre product should be

stackified, but as G × SpecR is already a stack, nothing changes. Thus we have almost shown

X → [X/G] to be relatively representable by fpqc morphisms. Almost, we say, because upon

replacing [X/G]pre with [X/G], new R-valued points are created, whose 2-fibre product should a

priori also be investigated. As being fpqc is an fpqc-local property, however, this is unnecessary,

so we’re done.

The pullback of X → [X/G] over itself is G × X , the structural maps being the projection

and action map. Lemma 4.2.9 now tells us that a quasi-coherent sheaf F over [X/G] is exactly

a quasi-coherent sheaf q∗F on X along with an isomorphism p∗2q
∗F

∼
−→ ρ∗q∗F satisfying the

cocycle conditions, which in turn is precisely the data needed to describe a G-equivariant sheaf

on X thanks to Lemma 4.3.3. �

We are now ready to get to the goal that we started out with, namely describing the sheaves

of M<1
FG. What about M<1

FG〈k〉, for various k? Investigating the proof of Lemma 3.2.4, one easily

finds that the truncation makes no difference, as formal group laws of height < 1 are entirely

determined by their lowest coefficients. It shows that the categories of (quasi-)coherent sheaves

over M<1
FG〈k〉 coincides with that of M<1

FG, so we might as well treat the truncated and non-truncated

cases in one go.
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Theorem 4.3.5. The category QCoh(M<1
FG) is equivalent to the category of Z-graded Q-vector

spaces. The truncations M<1
FG → M<1

FG〈k〉 are equivalences of stacks for all positive integers k, so

the categories QCoh
(
M<1

FG〈k〉
)

are the same. �

Proof: By Lemma 3.2.4, M<1
FG is equivalent to BGm × SpecQ, which in turn, as one can check,

is equivalent to [SpecQ/Gm]. Now Lemma 4.3.4 tells us that the category QCoh([SpecQ/Gm]) is

equivalent to the category of Gm-equivariant sheaves over SpecQ. Unravelling the definition, a

Gm-equivariant sheaf over SpecQ is just a Q-module M along with a Q[u±1]-module isomorphism

M[u±1] → M[u±1]. Such an isomorphism will be of the form m ⊗ 1 7→ m ⊗ ud, and we may set d

to be the degree of m. This uniquely determines a grading of M, and conversely, from any grading

we may reconstruct the isomorphism. See also [11, Tag 03LE] for more details. �

Next, we consider the sheaves on M̂n
FG, for various finite n, and then we discuss what changes

when passing to the truncations M̂n
FG〈k〉. Theorem 3.4.5 and Lemma 4.2.9 together tell us that

quasi-coherent sheaves on M̂n
FG correspond to quasi-coherent sheaves on Spf R(k, f ) satisfying

suitable overlap conditions on the fibre product Spf R(k, f ) ×
M̂n

FG
Spf R(k, f ). It makes sense to

further investigate this fibre product.

Lemma 4.3.6. Let the notation be as above. The automorphism group G = Aut
(
f (x, y)

)
, the

group structured being composition, acts on Aut
(

Spf R(k, f )/M̂n
FG

)
�

Before we move to the proof, we ask ourselves what automorphisms of Spf R(k, f ) should be in

the first place. We defined formal completions in a purely functorial manner, so that a morphism

Spf R(k, f ) → Spf R(k, f ) is, by definition, a natural transformation of the functor of points. The

following lemma helps us out. We omit the proof, but one can check that it follows as a special

case of [11, Tag 0AN0].

Lemma 4.3.7. Every morphism Spf R(k, f ) → Spf R(k, f ) uniquely corresponds to a continu-

ous ring map R(k, f )→ R(k, f ), where R(k, f ) is endowed with its m-adic topology. �

Unravelling the definitions, continuous ring maps R(k, f ) → R(k, f ) are precisely those ring

maps for which the pre-image of mn is mF (n) for some integer F (n). Equivalently, a morphism

Spf R(k, f ) → Spf R(k, f ) is a collection of maps SpecR(k, f )/mn → Spf R(k, f ) for all n, that are

compatible with the immersions SpecR/mn → SpecR/mn+1.

Proof sketch of Lemma 4.3.6: We begin by describing the G-action. Let h : f (x, y)→ f (x, y) be

an automorphism of the formal group law f (x, y) over k. Let A be a ring in Art(k). We begin by

defining a map FA : Def(A)→ Def(A). Take a deformation class [fA] in Def(A), and represent it by

a formal group law fA(x, y). It’ll be a lift of f (x, y). The mapW → k representing the isomorphism h

may be lifted to A, and looking at Lemma A.2.3 we can choose the lift in such a way, so tha the

source L → W → k represents fA(x, y). Write f ′A(x, y) for the target of the lifted isomorphism, and

take its deformation class [f ′A]. We now define FA by sending the class [fA] to [f ′A]. It is easily seen
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that this map is well-defined, and that the various FA satisfy the desired naturality conditions

for it to become a natural isomorphism of functors Def( · ) → Def( · ). As we know, the functor is

representable by SpfW (k)[[t1, . . . , tn−1]], so that thanks to the Yoneda Lemma, it gives rise to an

automorphism Spf R(k, f )→ Spf R(k, f ).

Up to isomorphism, the automorphism commutes with the map π : Spf R(k, f ) → M̂n
FG.

By Lemma 4.3.7, the automorphism is described entirely by the various maps SpecR(k, f )/mn →

Spf R(k, f ). These maps should correspond to a deformation of f (x, y) over R(k, f )/mn. Which

deformation? By construction, it’s described as follows. Writing p for the quotient map R(k, f ) →

R(k, f )/mn, it should be the image of the deformation class of [p∗funiv(x, y)] under the map

FR(k,f )/mn : Def
(
R(k, f )/mn

)
→ Def

(
R(k, f )/mn

)
. Passing to the limit, we find that the automor-

phism of Spf R(k, f ) classifies a possibly non-trivial deformation of funiv(x, y), which is nonetheless

isomorphic, as a formal group law, to funiv(x, y). This results in a 2-commutative diagram

Spf R(k, f ) Spf R(k, f )

M̂n
FG

FR(k,f )(funiv) funiv

Now, for any two automorphisms of f (x, y) that give rise to two automorphisms of Spf R(k, f ),

one can verify from the definitions that the composition of the automorphisms should give to the

composed automorphism of Spf R(k, f ), from which it follows that we have the desired G-action. �

For simplicity, let us restrict attention to the field k = Fp, and look at the natural map of

stacks

G × Spf R(Fp, f ) Spf R(Fp, f ) ×
M̂n

FG
Spf R(Fp, f )

(action,projection)

As it turns out, when we restrict our attention to substacks defined over the subcategory Art(Fp)op

of spectra of local Artin rings with residue field Fp, the above map defines an equivalence of

stacks, thus turning Spf R(Fp, f ) into a torsor over M̂n
FG, as was proved in [4, Thm. 7.17]. If k is

a more general field, Spf R(k, f ) remains a torsor over M̂n
FG, but the group G involved will need to

incorporate potential non-trivial automorphisms of k. Also, it should be noted that, if we stick

to keeping such automorphisms as part of the data of the objects in Art(k), then Art(k)op will no

longer be a subcategory of Aff.

Our aim is to apply Galois descent to the G-torsor structure of Spf R(Fp, f ) over M̂n
FG so as

to find an algebraic desciption of the category of quasi-coherent sheaves over M̂n
FG. But we only

know that Spf R(Fp, f ) is a torsor when viewed as a category over Art(Fp)op. There are two ways we

might proceed.

� Argue that quasi-coherent sheaves over the relevant stacks are entirely determined by

their values on local Artin rings; or
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� prove that Spf R(Fp, f ) is in fact a G-torsor more generally as a stack over Aff.

Let’s look at the first approach, and for simplicity moreover set n = 1 and f (x, y) = x + y + xy.

Suppose we wish to describe a quasi-coherent sheaf over M̂1
FG, but we only know what this

quasi-coherent sheaf does along pullbacks SpecA → M̂1
FG for local Artin rings A in Art(Fp). Does

this entirely determine the sheaf? There’s good reason to believe that the answer is no. Take

the ring R = Fp[u], and consider the formal group law f (x, y) corresponding to the map L(p) �

Z(p)[t1, t2, . . .] → R sending tp−1 to 1, sending tpn−1 to 0 for all remaining n > 1, but sending at

least one other ti to u. By Corollary A.3.10 this formal group law is of height 1. For any local Artin

ring A, any ring map A → Fp[u] will not have u within its image. In no way can f (x, y) therefore

be obtained as the pullback along such a ring map.

Perhaps we can make the first approach work by using the fpqc map from Spf R(Fp, f ).

By Lemma 4.2.9 we know that quasi-coherent sheaves over M̂1
FG can be described as certain quasi-

coherent sheaves over Spf R(Fp, f ), along with an isomorphism on the 2-fibre product. Thanks

to Lemma 4.2.3, we know the quasi-coherent sheaves over Spf R(Fp, f ) are determined by their

behaviour on local Artin rings, but what we don’t know right away is whether the isomorphism

on the 2-fibre product is determined on local Artin rings too.

The last question will admit a positive solution if the following holds. Given an R-valued

point SpecR → Spf R(Fp, f ) ×
M̂1

FG
Spf R(Fp, f ), does there always exist a local Artin ring A with

residue field Fp such that the above map factors through some A-valued point of Spf R(Fp, f )×
M̂1

FG

Spf R(Fp, f )? The answer seems to be negative. Take A to be the ring F2[u]/(u2 − u), and let

f (x, y) = x + y+ xy. We claim that h(t) = t + ut2 + ut3 describes an endomorphism of f (x, y), which

must be invertible by Lemma A.1.4. Simply expand

h
(
f (x, y)

)
− f

(
h(x), h(y)

)
= −u2x3y3 − u2x3y2 − u2x2y3 − u2x2y2 + ux3y3

+ 3ux3y2 + 4ux3y + 2ux3

+ 3ux2y3 + 7ux2y2 + 6ux2y

+ 2ux2 + 4uxy3 + 6uxy2

+ 2uxy + 2uy3 + 2uy2

Replace the u2 with u, simplify, and take the equation modulo 2, to find that it vanishes.

Now focus on the second approach. In order to prove that Spf R(Fp, f ) is a G-torsor over Aff,

we need to verify that the morphism

G × Spf R(Fp, f ) Spf R(Fp, f ) ×
M̂1

FG
Spf R(Fp, f )

(action,projection)

is an equivalence of stacks over Aff. Given an R-valued point on the right-hand side, does it

correspond to some R-valued point on the left-hand side? It would seem that the same example

provided above gives us a no, as the automorphism h(t) = t +ut2 +ut3 cannot be a pullback along

any map Z/pnZ→ R.
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Nonetheless we notice something hopeful in our example. The scheme Spec
(
F2[u]/(u2 − u)

)
is a disjoint union of two copies of SpecF2; taking the pullback of h(t) gives two F2-valued points

of the 2-fibre product, and these points do factor through a local Artinian ring — in fact, they are

objects of Art(F2) themselves.

A quasi-coherent sheaf on an algebraic stack is fully described once we know what it does on

pullbacks to connected schemes, which raises the question whether all counterexamples are like

the one presented above, and this indeed seems to be the case. Let R a ring. We may assume p is

nilpotent, say pn = 0, since we ask for it to admit a map to M̂1
FG. Let h(t) define an endomorphism

of the multiplicative formal group law f (x, y) = x+y+xy. Then it necessarily satisfies the functional

equation h(x + y + xy) = h(x) + h(y) + h(x)h(y). Write h(t) =
∑
n≥1 hnt

n, expand both sides of the

functional equation, and compare the coefficients in front of xp
k
yp

k
, for all k ≥ 1. Using some

elementary combinatorics, one finds the relation

hpk +
(pk + 1)!

1!1!(pk − 1)!
hpk+1 +

(pk + 2)!
2!2!(pk − 1)!

hpk+2 + · · ·

· · · +
(pk + (pk − 1))!

(pk − 1)!(pk − 1)!1!
hpk+(pk−1) +

(pk + pk)!
(pk)!(pk)!

hpk+pk = h2
pk

With help of Legendre’s formula if needed, one finds that all the non-trivial coefficients that occur

in the above equation are divisible by p, and hence nilpotent. In particular, it follows that h2
pk
−hpk

is a multiple of p, and hence nilpotent. (Moreover, if k is large enough, h2
pk
− hpk must in fact

be zero.) In the second part of the proof of Theorem A.4.2, we saw that, at least over Fp, every

automorphism h(t) was entirely determined by its values on h1, hp, hp2 , and so on. This part

carries over just fine to our situation, so what we may conclude is that h(t) is entirely determined

by elements whose difference with their squares are nilpotent.

Ignoring the hpk+1, . . . , hpk+(pk−1) for a moment, the equation x2 − x − cp ≡ 0 (mod pn) tends to

have two distinct solutions; in fact, it probably does so for all n and all constants c, but I’m not the

right person for that. The splitting of this polynomial gives rise to an idempotent of the form x − d

for some d ∈ R, provided that the characteristic p is not 2. If this all works out, we are able to split

up the ring R into components R/(x − d) and R/(x − d − 1), and we may repeat this discussion

for all the coefficients of h(t) for which this needed. Of course, there tend to be infinitely many

coefficients, but this problem goes away when considering k-buds. All things considered, it seems

reasonably safe to state the result we’re expecting in the form of a question, and continue with it

for the rest of this section.

Question 4.3.8. Let f (x, y) be a formal group law of height 1 over the field k = Fp. With

respect to the action of G = Aut
(
f (x, y)

)
on Spf R(k, f ) over M̂1

FG as constructed in Lemma 4.3.6,

we have an equivalence of categories between QCoh
(
M̂1

FG
)

and the category QCohG
(

Spf R(Fp, f )
)

of G-equivariant quasi-coherent sheaves over Spf R(Fp, f ). �
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We have to be a little bit careful when we say ‘G-equivariant’, as our original definition was

an equivariant object in the fibred category QCoh→ Sch, which does not apply in this context as

neither G (being abstract and infinite) nor Spf R(k, f ) (being formal) are schemes. However, the

equivalent definition in Lemma 4.3.3 generalizes easily to this context.

Question 4.3.9. Let f (x, y) be a k-bud of height 1 over Fp. The group G of k-bud auto-

morphisms of f (x, y) can be seen to act on Spf R(k, f ) over M̂1
FG〈k〉 in a manner analogous to the

construction in Lemma 4.3.6. With respect to this action, we have an equivalence of categories

between QCoh
(
M̂1

FG〈k〉
)

and the category QCohG
(

Spf R(Fp, f )
)

of G-equivariant quasi-coherent

sheaves over Spf R(Fp, f ). �

There are obvious generalizations of the above questions to higher heights, but we’ll stick with

the current level of generality. There are now three questions we should ask ourselves.

� What is G? This one has already been answered in Theorem A.4.2 and Theorem A.4.3 in

the non-truncated and truncated cases, respectively.

� Can we describe the action of G on Spf R(k, f ) algebraically?

� What does it mean, algebraically, to be a G-equivariant sheaf over an affine scheme (or a

formal affine scheme) when G is an abstract group?

Let us turn to the second question. We know from Lemma 4.3.7 that an automorphism of

Spf R(k, f ) should correspond to a continuous ring automorphism of R(k, f ). In our case, we’re

looking for continuous ring automorphisms of Zp. Apart from the identity, there are none. Thus,

every element in Z∗p acts on Zp via the identity map.

This result is confusing at first, and in fact it seems in blatant contradiction with [4, Thm. 7.19],

where it is shown that the automorphism group of Spf Zp should in fact be in bĳection with Z∗p.

The results are perfectly compatible however, and this is because of the 2-commutativity, rather

than the strict commutativity, with the structure maps to M̂1
FG; the 2-functor expressing this

2-commutativity should be taken as part of the data of an automorphism.

The above paragraph may or may not be disappointing to the reader. If it is, allow me to make

up for that by saying that, for higher n, the action of G on Spf R(k, f ) is highly non-trivial, or so

I’ve been told.

We’re now ready for the third question, which is to find an algebraic characterization of our

G-equivariant sheaves. We will impose the additional constraint that G is finite — something

which is reasonable so long as one works with k-buds. It is unclear to me how the generalization

to infinite abstract groups should go.

We begin with a finite abstract abelian group G acting on an affine scheme X = SpecA, and

let’s assume, just because we can, that we are working over an affine base scheme SpecR. We
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first remark that we said G is an abstract group, rather than a group scheme. This makes little

difference, however. Let us write R[G] =
⊕

g∈G R for the direct sum of |G| copies of R. An element

of R[G] is written
∑
g∈G rg. For convenience, we view elements of G as being within R[G], so that

when we write h ∈ R[G], what we really mean is
∑
g∈G rg, where rg = 1 when g = h and rg = 0

otherwise.

The spectrum SpecR[G] is a group scheme over R, or equivalently, R[G] is a Hopf algebra.

The cogroup structure m] : R[G]→ R[G] ⊗R R[G] is defined by

m] : g 7→
∑
h∈G

g · (h−1 ⊗ h) ,

and extending R-linearly. The counit of this cogroup structure is the map sending
∑
g∈G rg to re,

where e denotes the unit of G. We have a coaction ρ] of R[G] on A defined by sending a ∈ A to∑
g∈G g ⊗ g(a) ∈ R[G] ⊗R A, which gives rise to an action ρ of SpecR[G] on SpecA. Conversely,

starting out with the action ρ of SpecR[G] on SpecA, we can easily recover the original G-action.

Take a quasi-coherent sheaf F on X , corresponding to an A-module F (X ) = M. Recall

from Lemma 4.3.3 that a G-equivariant structure on F is a choice of isomorphism φ : p∗2F
∼
−→ ρ∗F

satisfying certain cocycle conditions. Let’s take global sections to see what happens on the level of

modules. The map φ(X ) is a map of R[G] ⊗R A-modules M ⊗A,p2 (R[G] ⊗R A) ∼−→ M ⊗A,ρ (R[G] ⊗R A).

Being a morphism of R[G] ⊗R A-modules, the image of m ⊗ 1R[G] ⊗ 1A under the map φ(X ) can

always be uniquely written into the form
∑
g∈G mg ⊗ g ⊗ 1, and, these images determine φ(X ). This

defines a map G × M → M, sending (g,m) to the element mg that we see written above. Thus we

find that the coaction is encoded within some kind of a map G ×M → M , and conversely, certain

such maps will always give always give rise to a morphism of R[G] ⊗R A-modules.

Which ‘certain such maps’? Being an R[G] ⊗R A-module map imposes the following algebraic

condition. Take a ∈ A and m ∈ M, and consider the image of am ⊗ 1R[G] ⊗ 1A under φ(X ). It must

be a ·
∑
g∈G mg ⊗ g ⊗ 1A. It’d be tempting to equate this to

∑
g∈G mg ⊗ g ⊗ a, but this is false, since

the R[G] ⊗R A-module structure of the codomain is described by the coaction ρ. The real image is

φ(X ) : am 7→
∑
g∈G

∑
h∈G

mg ⊗ gh ⊗ h(a)

=
∑
g∈G

mg ⊗ g ⊗ g(a)

=
∑
g∈G

g(a)mg ⊗ g ⊗ 1A

Thus we find the algebraic condition g(am) = g(a)g(m), and by reversing the procedure, we find

that any map G ×M → M satisfying this condition will give to a morphism like φ(X ).

What about the cocycle conditions? These turn out to precisely encode the additional compati-

bility relation that (gh)m = g(hm). In other words, G acts onM. We thus end up with a remarkably
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simple conclusion: G-equivariant quasi-coherent sheaves over SpecA are precisely A-modules ad-

mitting a G-action that is twisted over the module structure in the sense that g(am) = (ga)(gm).

We’d like to apply this to the case where G is (Z/pkZ)∗ and A is Spf Zp. Of course, we

should be careful, as we’re dealing with a formal scheme rather than an ordinary scheme. But in

our situation, this poses no issues, because for every g ∈ G, the automorphism on Spf Zp trivially

descends to the various SpecZ/pnZ; indeed, all the automorphisms were just identity maps. Being

identity maps, this also tells us that ga = a for all g ∈ G and a ∈ Zp. The twisting g(am) = (ga)(gm)

therefore simplifies to g(am) = ag(m). This brings us to the following theorem.

Theorem 4.3.10. Let k be an integer greater than p, and write r = blogp(k)c. Then

QCoh
(
M̂1

FG〈k〉
)

is equivalent to the category whose objects consists of all towers

· · · M3 M2 M1

of Zp-modules satisfying the following properties.

� The Zp-module structure on Mn descends to a Z/pnZ-module structure;

� the induced morphisms Z/pnZ ⊗Z/pn+1Z Mn+1 → Mn are isomorphisms of modules;

� each Mn admits an action from the group G = (Z/prZ)∗, and the action is compatible with

both the tower maps and the Z/pnZ-module structure, the latter meaning that, for all

m ∈ Mk, g ∈ G and a ∈ Z/pkZ, we have g(am) = a(gm).

If we restrict attention to Coh
(
M̂1

FG〈k〉
)
, then this simplifies to the category of modules over the

group ring Zp
[
(Z/prZ)∗

]
such that the underlying Zp-module is finitely generated. �

Combining Theorem 4.2.15, Theorem 4.3.2 and Theorem 4.3.5, we should be able to tell at this

point what the coherent sheaves over M<2
FG should be. They should correspond to a Zp

[
(Z/prZ)∗

]
-

module M and a Z-graded finite-dimensional Q-vector space V satisfying at least the following two

conditions.

� The underlying Zp-module of M is finitely generated;

� the tensor product M ⊗Qp Zp of the underlying Zp-module of M with Qp admits a grading

making it naturally isomorphic to the Z-graded Qp-vector space V ⊗Q Qp.

One additional condition is missing, however, namely the compatibility requirement that is needed

for the (Z/prZ)∗-action. In principle, this should be ‘trivial’ in the sense that it should follow from

writing out the definitions, but with sufficiently many definitions involved, such trivial things

aren’t all that trivial anymore. Let us put a number in front of my confusion.

Question 4.3.11. What does the compatibility relation of the coherent sheaves on M<1
FG

and M̂1
FG translate to algebraically? �
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Whatever the condition may be, the resulting category already looks similar to the description

of the category B(p)f of Bousfield’s. After having specified the compatibility relation, the passage

from coherent to quasi-coherent sheaves is described by Theorem 4.3.2 applied to the stack M<2
FG,

much in the same way that Bousfield went from B(p)f to B(p).

Finally, the passage from ungraded to graded quasi-coherent sheaves corresponds to going

from B(p) to B(p)∗. The stack M<2
FG admits an fpqc atlas by SpecZ(p)[v±1

1 ], and quasi-coherent

sheaves over M<2
FG should correspond to modules over Z(p)[v±1

1 ] with a certain isomorphism on the

fibre product. Asking for graded quasi-coherent sheaves over M<2
FG is simply equivalent to asking

for graded modules over Z(p)[v±1
1 ]. The element v1 has degree 2(p − 1), from which we find that

graded modules over Z(p)[v±1
1 ] are in a natural one-to-one correspondence with 2p − 2 copies of

ungraded such modules. Looking back at the definition of Bousfield’s B(p)∗, this is actually no

surprise: the condition that Tp−1Mn � Mn+2p−2 for all n tells us that objects in B(p)∗ are entirely

determined by 2p − 2 objects M1, . . . , M2p−2 in B(p).

4.4 Conclusion and scope for future work

Regardless of the final details, there should be no doubt remaining that the analysis in the

last two sections provides a promising new look on Bousfield’s initial insights. Even though the

details aren’t entirely filled in, we can take a look back at Section 4.1 and ask how the various

details may be interpreted from our new perspective.

For example, the fpqc atlas SpecZ(p)[v±1
1 ] of M<2

FG gives rise to a pullback functor of quasi-

coherent sheaves, which, by Section 2.5, corresponds to the forgetful functor sending E(1)-

comodules to their underlying modules. A right adjoint, like the functor U, is now easily found:

just take the pushforward functor.

Here’s another example. For a Noetherian ring R, it can be verified that the category of R-

modules is equivalent to the category of coherent R-modules. It is easily envisaged that this

generalizes to Noetherian schemes, and further to Noetherian stacks. M<2
FG being an example of

such a stack, we can compute the homological dimension of its category of quasi-coherent sheaves

by looking at its category of coherent sheaves instead. This simplifies matters.

We might wonder what distinguishes the case p = 2, geometrically speaking. As we know by

now, we required p to be an odd prime in Bousfield’s paper, but at no point in the last two sections

was a hypothesis on the prime p needed. The answer lies in the structure of the group G that

occurs when describing the formal Lubin–Tate spectrum as a G-torsor over M̂1
FG〈k〉. Indeed, we

determined that G is (Z/prZ)∗, and if p is odd then this group is cyclic, while if p = 2, it isn’t. This

is of course analogous to the fact that the group Γn that Bousfield used in the definition of B(p)∗
fails to be cyclic when p = 2.
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So what does happen in the case that p = 2? As mentioned earlier, it is known that the

comodule category is more complicated algebraically, and in particular, we cannot ensure the

degeneration of Adams’ spectral sequence. In 1990 a ‘follow-up’ paper [3] was published in which

the restriction of arithmetic localization is eliminated altogether. Spending a few words on it right

now is undeniably worth the effort.

To resolve the issue of the infinite homological dimension, Bousfield replaces complex K-theory

by a functor KCRT that he calls ‘united K-theory’. Given a space X , the united K-homology of X is

given by
{
KU∗(X ),KO∗(X ),KT∗(X )

}
. Here KO is real K-theory and KT is the 4-periodic spectrum of

self-conjugate K-theory — God knows what the T stands for. We view this three-element set as an

object in a certain category ACRT which takes into account all of the many KO-module operations

that exist between the three spectra KU, KO, and KT, along with the stable Adams operations.

In a sense, this category ACRT subsumes our category of KU(p)-comodules, for all p. Miracu-

lously, although the KU(2)-comodule category has infinite homological dimension, ACRT doesn’t:

its homological dimension is at most 2. In similar fashion to our outline in Section 4.1, this allows

Bousfield to embark on an algebraic investigation of the category ACRT, and as a consequence, of

the structure of the KU-local homotopy category.

In view of the previous hundred-or-so pages, it would be natural to ask if the constructions

in this paper, too, have some sort of geometric interpretation. Bousfield proves that the category

ACRT is abelian and has enough injectives — properties which are typical of categories of sheaves

over spaces, whatever ‘space’ may still mean at this point.

Another promising point I’d like to mention is that the methods we have described are

amenable to generalizations to higher heights, modulo severe complications. It’s better than

nothing, however: for instance, as far as I’m aware, no conjectural algebraic description of the

category of E(2)-comodules seems to exist as of today, but I may well be wrong about this.

Taking into account the points stated above, as well as others that will surely exist (for one,

my supervisor explained to me a fun application, which I have forgotten by now), it is my hope

that what I’ve written will at some point spark the enthusiasm of a bright mind, eager to finish up

the chaotic remnants that I hereby leave behind.
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Appendix A

Formal group laws

Roughly speaking, a formal group law is a formal power series in two variables over a commu-

tative ring that satisfies certain associativity, unitality and commutativity axioms. Formal group

laws enter the stage of algebraic topology via the theory of complex-oriented cohomology theories,

where they express how Chern classes of line bundles transform under tensor products.

As the language of formal group laws is prominently featured throughout this thesis, we

dedicate an appendix to this topic, serving as a reference for the rest of this thesis. We will not go

far into the theory, introducing only that which we will need later on, most notably heights and

endomorphism rings.

A.1 First definitions

In this section we define formal group laws and formal groups. There are several different but

equivalent definitions in the literature. For completeness, we will give two of them here. Start

with a commutative ring R. A (one-dimensional commutative) formal group law over R shall be

defined to be a power series f (x, y) ∈ R[[x, y]] satisfying the identities

f (x,0) = f (0, x) = x , f (x, y) = f (y, x) and f
(
x, f (y, z)

)
= f

(
f (x, y), z)

)
.

The rules should be interpreted as unitality, commutativity, and associativity of the ‘operation’

defined by f (x, y).

Example A.1.1. There are two simple examples of formal group laws, defined for all rings R.

One is the additive formal group law, defined by f (x, y) = x + y; the other is the multiplicative

formal group law f (x, y) = x + y + xy. There are many other more complicated formal group laws

— can the reader find some?

We now recall the definition of the formal affine line Â1
R. It is defined to be the functor

R–Alg→ Set sending an R-algebra A to the set of nilpotent elements of A. This definition turns Â1
R
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into a Zariski sheaf on the category of affine schemes over R, and in fact, it is a formal scheme, as

it is obtained as the filtered colimit over SpecR[x]/(xN ), as N ranges over the positive integers.

Lemma A.1.2. Formal group laws over R are in one-to-one correspondence with lifts of the

functor Â1
R to Ab. �

Proof: Given a formal group law f over R, we may define a lift F of Â1
R to Ab as follows. For

every R-algebra A, we attempt to endow Ã1
R(SpecA) with an abelian group structure by sending

two nilpotent elements x and y to f (x, y). As x and y are nilpotent, the expression f (x, y) is

finite, so this is a well-defined operation. Let us verify that it indeed defines a group structure on

Â1
R(SpecA).

As x and y are nilpotent, the resulting expression is finite, so this is well-defined; moreover, the

identities defining a formal group law ensure that this structure is indeed that of a commutative

monoid. It remains to be shown that inverses of non-zero element exist. We are done if we find

a power series ι(x) ∈ R[[x]] such that f
(
x, ι(x)

)
= f

(
ι(x), x

)
= 0. This power series ι(x) can be

constructed term by term. That is, write f (x, y) =
∑
i,j cijx

iyj and start with the expression

∑
i,j

cijx
i
(∑

k

dkx
k
)j

= 0 .

Write down the constant term on the left-hand side, and equate it to 0. We find that this yields

nothing new. Next, write down the coefficient of the x1-term on the left-hand side, and set it to

zero, giving us

c10 + c01d1 + c11d0 = 0 .

Put d0 = 0, and d1 = −1. The coefficient of the x2-term gives us

c20 + c11d1 + c02 (2d0d2 + d2
1) = 0 ,

so that we can figure out what d2 is. Going on, we find that the coefficient of the x3-term is an

expression in the cij, in d0, d1, d2, and d3. As we already know d0, d1, d2, we can solve this

equation as well. As one can verify, this process continues indefinitely, thus giving us a way to

inductively construct every coefficient of the formal power series of ι(x).

Associating, to every set Â1
R(SpecA), the group structure as defined above gives rise to the

desired functor F : R–Alg→ Ab. Indeed, our association is natural in the sense that, if π] : A → A′

is a map of R-algebras, the associated map F (π) : F (SpecA) → F (SpecA′) sending a nilpotent

element x to π](x) is a group morphism: π] preserves 0 by construction, and the identity

π]
(
f (x, y)

)
= f

(
π](x), π](y)

)
easily follows from the definition.

Conversely, given a lift F of Â1
R to Ab, one can reconstruct the formal group law f (x, y) from

which it is defined by considering the group structure on Â1
R(SpecAN ) for increasing N , where AN

is the R-algebra R[x, y]/(xN , yN ). �
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We now know that a formal group law over a ring R can be interpreted as either a lifted func-

tor F : R–Alg→ Ab and as a formal power series f (x, y) in R. What do the natural transformations

between two lifted functors represent? This brings us to the following definition, which we rein-

terpret in the lemma below. A morphism of formal group laws h : f (x, y) → g(x, y) over R is a

formal power series h(t) ∈ R[[t]], with constant term 0, such that f
(
h(x), h(y)

)
= h

(
g(x, y)

)
.

The requirement that the constant term be 0 makes life easier rather than harder. This is

because compositions of formal power series need not be well-defined without this assumption.

For instance, if f (t) = 1 + t + t2 + · · · , and g(t) = 1, then f
(
g(t)

)
is not a well-defined power series.

Another motivation for adding this assumption is the following lemma.

Lemma A.1.3. Let f (x, y) and g(x, y) be two formal group laws over a ring R. Then there

is a one-to-one correspondence between morphisms of formal group laws f (x, y) → g(x, y), and

natural transformations from the functor F corresponding to the formal group law f (x, y), to the

functor G corresponding to the formal group law g(x, y). �

Proof: Given a morphism of formal group laws, define the natural transformation F → G

as follows. For every affine R-scheme SpecA, define a map F (SpecA) → G(SpecA) by send-

ing a nilpotent element x to the nilpotent element h(x). By assumption, this respects the

group structures. Conversely, given a natural transformation F → G, we can reconstruct

the formal power series defining the morphism of formal group laws by considering the maps

F
(
SpecR[x]/(xN )

)
→ G

(
SpecR[x]/(xN )

)
, as N ranges over the positive integers. �

If h1 : f (x, y) → f ′(x, y) and h2 : f ′(x, y) → f ′′(x, y) are two morphisms of formal group laws

over a ring R, then there is an obvious way to compose these two morphisms: the identity

f
(
h1h2(x), h1h2(y)

)
= h1

(
f ′(h2(x), h2(y))

)
= h1h2

(
f ′′(x, y)

)
yields a composed morphism h1h2 : f (x, y) → f ′′(x, y), and this composition is associative in an

appropriate sense. In particular, this allows us to define what it means for a morphism h : f (x, y)→

g(x, y) to have an inverse, which we denote by h−1. We emphasize that this inverse is not the

multiplicative inverse of h(t), but the inverse under composition.

Lemma A.1.4. If h(t) is a formal power series in a single variable such that h(0) = 0. Then

a formal power series h−1(t) such that h−1 ◦ h(t) = h ◦ h−1(t) = t exists if and only if h′(0) is a

unit. �

Proof: The coefficients of the power series h−1(t) can be found inductively. Write h(t) =

a1t + a2t2 + · · · , and h−1(t) = b1t + b2t2 + · · · . Take the equation

a1(b1t + b2t
2 + · · · ) + a2(b1t + b2t

2 + · · · )2 + · · · = t
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and compare the coefficients on both sides; this yields the equations

a1b1 = 1 ,

a1b2 + a2b
2
1 = 0 ,

a1b3 + 2a2b1b2 + a3b
3
1 = 0 ,

and so on. Clearly b1 can only exist if a1 is a unit, and once we know that we see that bi+1 is

determined uniquely by the aj and b1, . . . , bi . �

If h : f (x, y) → g(x, y) is an invertible morphism of formal group laws, we call it an isomor-

phism. If, in fact, h′(0) is not just a unit but it equals 1, we say that we have a strict isomorphism

of formal group laws.

Let π : SpecR′ → SpecR be a map of affine schemes, corresponding to a ring map π] : R → R′.

Let f (x, y) be a formal group law over R represented by a functor F : R–Alg → Ab. We construct

a functor F ′ : R′–Alg → Ab as follows. Whenever we have an affine R′-scheme SpecA → SpecR′,

compose the structure map of SpecA with π so as to view SpecA as an R-scheme. Now let F ′(SpecA)

be F (SpecA).

Lemma A.1.5. With the notation as above, F ′ corresponds to a formal group law f ′ over R′.

Explicitly, the formal power series f ′(x, y) is given by
∑
i,j π

](cij) x iyj. �

Depending on whether you prefer rings or affine schemes, the formal power series f ′ obtained

in the lemma above can be either called the pushforward or the pullback of f . We stick to the

latter convention, and also denote f ′ by π∗f .

Proof of Lemma A.1.5: This is true essentially by construction. For every affine R′-scheme

SpecA, the group structure on F ′(SpecA) is defined to be inherited from the group structure on

F (SpecA). It must therefore be the case that the corresponding formal power series is obtained by

substitution. �

There is one more definition we wish to discuss. In Chapter 3 we will be interested in the

so-called moduli stack of formal groups. Roughly speaking, this moduli stack is constructed as

follows. We have a groupoid-valued presheaf that sends a ring R to the groupoid of formal group

laws over R, where the morphisms are given by isomorphisms defined in the sense above. This

presheaf fails a descent condition, so we sheafify our presheaf; the resulting sheaf defines this

moduli stack.

To accurately describe this sheaf, it can be useful to define a ‘global’ version of a formal group

law, i.e. an object that is essentially just a formal group law Zariski-locally. Confusingly, there

are several ways of going about this, and the terminology used to describe such an object is not

fixed, but they may rightfully be called formal groups. Luckily for us, we will never need such
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models in any critical way, and we will instead refer the reader to [4, Ch. 2] or [5, Lecture 11] for

two ways of making formal groups precise.

A.2 Lazard’s theorem

For every ring R, we can consider the collection of all formal group laws over R, denoted FGL(R).

Given a morphism π] : R → R′ of commutative rings, we just learned that we have a pullback map

FGL(R)→ FGL(R′). Thus FGL defines a functor.

Lemma A.2.1. The functor FGL is representable. That is, there’s is a ring L such that formal

group laws over R are in one-to-one correspondence with ring morphisms from L to R. �

The ring L representing FGL is called the Lazard ring, and is traditionally denoted by L.

Proof of Lemma A.2.1: Every power series f (x, y) ∈ R[[x, y]] can be written as a formal sum

f (x, y) =
∑
i,j cijx

iyj, where cij are unspecified elements of R. As said before, the identities defining

a formal group law put constraints on the cij, namely c10 = c01 = 1, ci,0 = c0,i = 0 for all i , 1,

and cij = cji for all i and j. Finally, the associativity identity f
(
x, f (y, z)

)
= f

(
f (x, y), z

)
imposes

additional polynomial constraints that nobody ever writes down as the precise form is irrelevant.

We do it anyway, and advice the reader not to read this more than once. We start out with the

identity ∑
i,j

cijx
i
(∑
k,`

ck`y
kz`

)j
=

∑
i,j

cij
(∑
k,`

ck`x
ky`

)i
zj .

Now fix i = α, j = �, and k = γ, and equate the coefficients of xαy�zγ that both sides of the above

equation give us. This yields

∞∑
j=0

∑
k1,...,kj

k1+···+kj=�

∑
`1,...,`j

`1+···+`j=γ

cαj ck1`1 · · · ckj`j =

∞∑
i=0

∑
k1,...,kj

k1+···+ki=α

∑
`1,...,`j

`1+···+`i=�

ciγ ck1`1 · · · cki`i .

Notice that this is a polynomial equation despite the infinite summation. Define the ring L to be the

polynomial ring Z[cij] modulo the infinitely many polynomial constraints imposed by the identities

of the formal group laws. Essentially by construction then, every map L → R corresponds to a

formal group law. �

Despite its messy construction, the structure of the Lazard ring is surprisingly simple, as the

next result shows. What follows is based on [5, Lecture 2].

Theorem A.2.2 (Lazard’s Theorem). The Lazard ring is non-canonically isomorphic to the

free polynomial algebra Z[t1, t2, . . .]. �

We endow the Lazard ring with a natural grading. The variables cij carry degree 2(i + j − 1),

while the variables ti carry degree 2i. With respect to this grading, the isomorphism becomes an

isomorphism of graded rings. The choice of grading explains itself in Theorem 1.3.9, where it is the
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right grading to force the map between L and MU∗ to be an isomorphism of graded ring; moreover,

up to a factor 2, the grading also corresponds to the Gm-action obtained by suitably restricting the

action from the group {h(t) ∈ R[[t]] : h′(0) ∈ R∗} (the group structure given by composition) to R∗.

Proof sketch of Theorem A.2.2: If f (x, y) is a formal group law over a ring R, and we make the

substitution g(t) = t + b1t2 + b2t3 + · · · , then the formal power series g
(
f (g−1(x), g−1(y))

)
is also a

formal group law over R. In particular, if f (x, y) = x + y, then g
(
g−1(x) + g−1(y)

)
can be viewed as

a formal group law over the polynomial ring Z[b1, b2, . . .]. This yields a map φ : L → Z[b1, b2, . . .].

If we endow the bn with degree 2n, one can see that φ becomes a map of graded rings.

The map φ need not be an isomorphism. However, we have the resulting result, whose proof

can be found in [5, Lecture 3]. Let I and J be the ideals of L and Z[b1, b2, . . .], respectively,

generated by the elements of positive degree. Then the map φ induces an injection (I/I2)2n →

(J/J2)2n � bnZ; as it is shown in the reference mentioned, the image of this map is p Z if n is of

the form pk − 1 for some k, and is Z otherwise.

As a consequence, (I/I2)2n is canonically isomorphic to Z. For all n, choose a lift tn ∈ L2n of

a generator of (I/I2)2n. This defines a map of rings θ : Z[t1, t2, . . .] → L. The map θ is the desired

isomorphism, which we prove now. It is injective, as can be seen by noting that the composition

φ◦θ, which sends tn to bn
(
mod J2

)
must be injective too. It is surjective, as is proved by induction

on the degree. First note that, in degree 2, surjectivity of θ can be verified explicitly as the relations

in L are simple in low degree. Now say we know that θ in degree 2n. Then it must contain the

degree-(2n+2) part of I2. But by assumption, the image of θ also has a generator for (I/I2)2n+2 � Z.

Hence θ reaches all if L2n+2. �

Given a ring R, we can not only consider the set of formal group laws over R, but also set of

isomorphisms between any two formal group laws over R (where we do not identify between an

isomorphism and its inverse), temporarily denoted IsoFGL(R). Given a ring map π] : R → R′, any

isomorphism h : f (x, y)→ g(x, y) of formal group laws over R can be pulled back to an isomorphism

π∗h : π∗f (x, y) → π∗g(x, y) of formal group laws over R′ by substitution of the coefficients of the

power series defining h. This turns IsoFGL into a functor Ring→ Set.

Lemma A.2.3. The functor IsoFGL is representable by a ring, commonly denoted W , and it

equals L[a±1
1 , a2, a3, . . .]. �

Proof: An isomorphism h : f (x, y) → g(x, y) of formal group laws over a ring R is entirely

determined by the formal group law f (x, y) together with the formal power series h(t). This is

because we can recover g by the formula g(x, y) = h−1(f (h(x), h(y))
)
. Thus every isomorphism

of formal group laws over R is uniquely determined by a single formal group law and a single

invertible power series. This data corresponds precisely to a morphism L[a±1
0 , a1, a2, . . .]→ R. �
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Given a ring R, the formal group laws over R and the isomorphisms between them give rise

to a groupoid of formal group laws. By Lemma A.2.1 and Lemma A.2.3, it follows that the pair(
Hom(L, R),Hom(W,R)

)
comprise the objects and morphisms of a groupoid. In more technical

terms, this tells us that the pair (L,W ) is a Hopf algebroid. We return to this in Section 2.1.

Finally, we remark that we could repeat much of the story above when replacing isomorphisms

with strict isomorphisms. The proof of Lemma A.2.3 carries over to show that strict isomorphisms

are representable by some ring W s, namely the ring L[a2, a3, . . .], and this turns (L,W s) into

another example of a Hopf algebroid.

A.3 Heights

A reasonable question to ask is how we can prove that two given formal group laws are not

isomorphic. In this section we introduce an invariant that can tell certain group laws apart, but

which is also of interest from a more theoretical point of view. I also refer the reader to [5, Lectures

12–14 and 19] and [7, Section 4.2] for other sources covering heights of formal group laws.

Fix a formal group law f (x, y) over a ring R. For every positive integer n, the n-series [n](t)

of f is defined recursively via [0](t) = 0 and [n + 1](t) = f ([n](t), t). The intuition here is that the

n-series represents a multiplication by n. Now fix a prime number p, and write vn(f ), or vn for

short if the context is clear, for the coefficient of tp
n

in the p-series [p](t) of f (x, y). We say f (x, y)

has height ≥ n if vk = 0 for all k < n, and f (x, y) has height n if moreover vn is an invertible

element of R. We remark that, for any formal group law f (x, y) over R, v0 equals p, so saying that

a formal group law is of height ≥ n for some non-trivial n implicitly tells you something about the

ring R as well: it is of characteristic p.

Lemma A.3.1. Let R be a ring of characteristic p, and let f (x, y) be a formal group law over R.

Then either [p](t) = 0, or there exists a unique n ≥ 0, namely the height, such that [p](t) = g
(
tp

n )
for some formal power series g(t) with g′(0) , 0. �

Proof: Let’s take a morphism h : f (x, y)→ g(x, y) of formal group laws. Assume that h′(0) = 0.

Differentiate the identity f
(
h(x), h(y)

)
= h

(
g(x, y)

)
with respect to y, use straightforward differenti-

ation rules, and finally apply y = 0 to find the identity

h′(0)
∂

∂y
f
(
h(x),0

)
= h′(x)

∂

∂y
g(x,0) .

As h′(0) = 0, the left-hand side vanishes, hence so must the right-hand side. But ∂yg(x,0) =

1 + g11x + g21x2 + · · · , which is always a unit in R, and so it must be the case that h′(x) vanishes

too. Thus if h′(0) = 0 then also h′(t) = 0 for all t.

Next, we make a simple observation. If h(t) is a formal power series over R, say h(t) =

h0 + h1t + · · · , and h′(t) = 0, then we can write h(t) = k(tp) for some other formal power series k.
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Indeed, the vanishing of the derivative tells us that nhn = 0 for all n ≥ 0, so for all n that is coprime

to p, hn will vanish. We thus find h(t) = h0 + hptp + h2pt2p + · · · , as desired.

We use the above two observations to prove that, for any morphism h : f (x, y) → g(x, y) of

formal group laws, either h = 0, or h(t) = k(tp
n
) for some formal power series k(t) with k′(0) , 0.

To prove this, we argue as follows. First off, let’s assume h′(0) , 0. Then we take n = 0 and we’re

done. So assume h′(0) = 0. Then by the above discussion, h(t) = k(tp) for some formal power

series k(t). In turn, if k′(0) , 0 then we’re done. If k′(0) = 0, then we might hope that k′(t) = 0

and we could repeat the procedure. But we need to establish k(t) as some morphism of formal

group laws in order to do that. We claim that k(t) is indeed such a morphism. Let F ∗g be the

pullback of the formal group law g(x, y) along the Frobenius endomorphism F of R. Then

k
(
F ∗g(xp, yp)

)
= k

(
g(x, y)p

)
= h

(
g(x, y)

)
= f

(
h(x), h(y)

)
= f

(
k(xp), k(yp)

)
.

This may be interpreted as an equality of formal power series in the variables xp and yp, so we may

as well make the substitution xp 7→ x and yp 7→ y to find that k is indeed a morphism of formal

group laws. We may thus conclude that either k′(0) , 0 or k′(t) = 0, and repeat the procedure.

The statement of the lemma follows by applying the above discussion to the special case of

the endomorphism [p] : f (x, y) → f (x, y). To prove that this is indeed an endomorphism, we need

the following claim.

Lemma A.3.2. If h1, h2 : f (x, y) → f (x, y) are two endomorphisms of a formal group law

f (x, y), then so is the power series k(t) = f
(
h1(t), h2(t)

)
. �

Proof: This is a consequence of the following chain of manipulations:

f
(
k(x), k(y)

)
= f

(
f
(
h1(x), h2(x)

)
, f

(
h1(y), h2(y)

))
by definition

= f
(
h1(x), f

(
h2(x), f (h1(y), h2(y))

))
associativity

= f
(
h1(x), f

(
h2(x), f (h2(y), h1(y))

))
commutativity

= f
(
h1(x), f

(
f (h2(x), h2(y)), h1(y)

))
associativity

= f
(
h1(x), f

(
h1(y), f (h2(x), h2(y))

))
commutativity

= f
(
f
(
h1(x), h1(y)

)
, f

(
h2(x), h2(y)

))
associativity

= f
(
h1

(
f (x, y)), h2

(
f (x, y))

)
h1 and h2 are endomorphisms

= k
(
f (x, y)

)
by definition �

We use this lemma in the special case where h2(t) = t to prove, inductively, that the n-series

[n](t) defines an endomorphism of f (x, y). Indeed, this is clearly true for n = 0, and if it is true for

some n = k, then the above claim implies that it holds for n = k + 1 as well. �

Lemma A.3.3. Let f (x, y) and g(x, y) be two formal group laws over a commutative ring R,

and fix a prime p. If f (x, y) and g(x, y) are isomorphic, then the heights of f (x, y) and g(x, y) are the
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same. That is, if f (x, y) is of height ≥ n, then so is g(x, y), and also if f (x, y) is of height exactly n,

then so is g(x, y). �

Proof: If h : f (x, y) → g(x, y) defines an isomorphism, then one can verify that [p]f (t) ◦ h(t) =

h ◦ [p]g(t). Now suppose f (x, y) is of height ≥ n, and g is of height ≥ m. Expanding both sides of

the equality, and invoking Lemma A.3.1 to simplify our lives, we find that the lowest-order term

on the left-hand side will be vm(g)(h1t)p
m
, where h1 = h′(0), which we recall must be a unit in R,

so that vm(g)hp
m

1 , 0; the lowest-order term on the right-hand side, on the other hand, is vn(f )tp
n
.

It follows that m = n. Moreover, we see that if vn(f ) is a unit in R, then so is vm(g). �

Example A.3.4. The p-series of the multiplicative formal group law is [p](t) = (1 + t)p − 1.

If R is a ring in which p = 0, then this simplifies to tp. Thus for rings of characteristic p, the

multiplication formal group law has height exactly 1.

Example A.3.5. The p-series of the additive group law is [p](t) = p t. If p = 0 in our ring,

then the p-series vanishes altogether, in which case we say the formal group law has infinite

height. From Lemma A.3.3 it follows that over such rings the additive and multiplicative formal

group laws are not isomorphic.

We point out that there may well be other rings over which the additive and multiplicative for-

mal group laws are isomorphic. As an example, let R be the ring Q, in which case the additive and

multiplicative group law have height 0, regardless of the choice of prime. An explicit isomorphism

from the multiplicative formal group law to the additive formal group law is given by the power

series associated to h(t) = et − 1, while the inverse map is given by h(t) = log(t + 1). in fact, this

is just one instance of a much more striking result.

Lemma A.3.6. If R is a Q-algebra, any two formal group laws will always be isomorphic. �

Proof: Let f (x, y) be a formal group law over our Q-algebra R. Let f2(x, y) be the algebraic

derivative ∂yf (x, y), and algebraically define the logarithm of f (x, y) to be

logf (x) =

∫ x

0

1
f2(t,0)

dt .

(We point out that we critically need R to be a Q-algebra here: the primitive of xn is xn+1/(n + 1),

which need not exist if R is not a Q-algebra.) We claim that logf (f (x, y)) = logf (x) + logf (y), which

would establish an isomorphism between f and the additive formal group law. To prove this,

simply differentiate both sides with respect to x, find that these derivatives coincide, and repeat

the story when taking the derivatives with respect to y. As both sides have equal constant terms,

they must represent the same formal power series. �

It will be useful to introduce the following definition, based on our notion of height. The

terminology is confusing at first, but will become natural in Section 3.2. Let f (x, y) be a formal

group law over a ring R. We say f (x, y) is of height < n if the coefficients v0, . . . , vn−1 occurring
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in the p-series of f (x, y) generate the ring R. Equivalently, if f (x, y) corresponds to a ring map

g : L → R, we ask for the ideal
(
g(v0), . . . , g(vn−1)

)
to be all of R.

Lemma A.3.7. Let f (x, y) and g(x, y) be two isomorphic formal group laws over R. If f (x, y) is

of height < n, then so is g(x, y). �

Proof: Let us define R′ to be the quotient ring R/
(
v0(g), . . . , vn−1(g)

)
. Under the obvious

quotient map, g(x, y) gets pulled back to a formal group law of height ≥ n. The isomorphism

between f (x, y) and g(x, y) gets pulled back to an isomorphism of formal group laws over R′, so

that by Lemma A.3.3, f (x, y) is of height ≥ n over R′. This means that v0(f ), . . . , vn−1(f ) vanish

in R′, or equivalently, that they are contained within the ideal
(
v0(g), . . . , vn−1(g)

)
. As f (x, y) was

of height < n,
(
v0(f ), . . . , vn−1(f )

)
generates all of R, hence so must

(
v0(g), . . . , vn−1(g)

)
. �

In Section 3.4, we will be interested in the following weakening of the notion of height. We

remark that the terminology is non-standard. Let f (x, y) be a formal group law over R. We say

f (x, y) is almost of height n if the coefficients v0, . . . , vn−1 occurring in the p-series of f (x, y) are

nilpotent in R, and the element vn is a unit. We have the following variant of Lemma A.3.3.

Lemma A.3.8. Let f (x, y) and g(x, y) be two formal group laws over R, which we assume to

be isomorphic. If f (x, y) is almost of height n, then so is g(x, y). Moreover, if N is the smallest

integer for which vi(f )N = 0 for all i = 0, . . . , n − 1, then there exists an integer m(N), depending

on N but not on g(x, y), such that vi(g)m(N) = 0 for all i = 0, . . . , n − 1. �

Proof: Since v0 = p always, the fact that f (x, y) is almost of height n tells us that pk = 0 in R

for some fixed k. Write π for the projection R → R/(p). Notice that, if x is an element in R/(p)

such that xn = 0, then any lift of x to an element x in R satisfies xkn = 0 as well.

Denote by F the Frobenius endomorphism on R/(p). The formal group law f (x, y) is almost

of height n, so that there’s N such that vi(f )N = 0 for all i. Certainly (FN )∗π∗f (x, y) will then be

of height exactly n. (In fact, we need far less compositions of F , but this is irrelevant.) Moreover,

if h : f (x, y) → g(x, y) defines our isomorphism of formal group laws, then (FN )∗π∗h defines an

isomorphism from (FN )∗π∗f (x, y) to (FN )∗π∗g(x, y). By Lemma A.3.3, we now see that (FN )∗π∗g(x, y)

is of height exactly n. In particular, it follows that vi(g)Np vanishes mod (p), hence vi(g)Npk = 0

in R. As neither N nor p nor k depend on g(x, y), the result follows. �

The coefficients of the p-series of a formal group law f (x, y) =
∑
i,j cijx

iyj over R will certainly

admit a polynomial expression in terms of the cij, which the reader can show inductively if he

so wishes. In particular, this is true for the pn-th coefficient, and we denote the corresponding

polynomial in the cij by vn. Every element vn corresponds to a fixed element in the Lazard ring L,

where we emphasize the dependence on the chosen prime p.
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If we use the presentation of L as the polynomial ring Z[t1, t2, . . .], then the vn admit a sur-

prisingly nice description. We recall that the isomorphism between L and Z[t1, t2, . . .] was not

canonical, but we saw in the proof of Theorem A.2.2 that, if I is the ideal of L generated by the

elements of positive degree, the isomorphism between (I/I2)2n and Z · tn is canonical. It follows

that we may expect vn to correspond to a particular well-defined element in Z · tpn−1.

Lemma A.3.9. With the notation as above, the image of vn in (I/I2)2(pn−1) is pp
n−1 − 1. �

Proof: The proof becomes transparent once we look more closely into the construction of the

(non-unique) isomorphism between L and Z[t1, t2, . . .] — something we did not do, as we will not

need it at any point in the future. We therefore refer the reader to [5, Prop. 1 of Lecture 13]

instead. �

Corollary A.3.10. If we localize at p, we may choose a particular isomorphism L(p) �

Z(p)[t1, t2, . . .], where each tpn−1 is given by vn. �

Proof: For any p-local ring R the integer pp
n−1 − 1 is invertible in R, and so, up to a unit, we

may as well say that the image of vn in Ztpn−1 is a generator. �

Corollary A.3.11. Let R be a ring of characteristic p. Then, for every positive integer n, as

well as n = ∞, there exists a formal group law of height exactly n. �

Proof: A formal group law over R corresponds to a ring map L � Z[t1, t2, . . .] → R. Consider

the map which sends tpn−1 to 1, but which takes the other ti to 0. From the above lemma, the

element vn gets sent to −1, while the other vi vanish. Whatever the formal group law looks like, it

is clearly of height n. Finally, an example of a formal group law of infinite height is given by the

additive formal group law by Example A.3.5. �

We might ask ourselves if we can somehow classify the formal group laws up to isomorphism.

In general, we can expect this to be an intractable problem: Given that formal group laws corre-

spond to infinitely many choices of elements in our ring, there are simply too many to list them

all.

But let’s look at the very simplest scenarios only. We’ve already solved one case. In the proof

of Lemma A.3.6, we saw that the ring being a Q-algebra allowed for sufficiently many degrees of

freedom (in the sense of enough having multiplicative inverses) to construct many isomorphisms

of formal group laws. It is reasonable to expect a similar such freedom in the case of fields of

characteristic p. Over such fields, we know that every formal group law is either of some exact

height n, or of infinite height. By Lemma A.3.3, we can restrict attention to one height at a time,

and by Corollary A.3.11 we know that there is at least one such formal group law for every such

height.
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Lazard proved that, under the additional constraint that our field is separably closed, we have

a tractable classification.

Theorem A.3.12 (Lazard’s Theorem). Let k be a separably closed field of characteristic p.

Then any two formal group laws of height exactly n are isomorphic. �

For a proof, see [5, Lecture 14]. In Theorem 3.2.5, we will revisit this result, where we will

find that it is manifestly geometric.

A.4 Endomorphisms of formal group laws

Let f (x, y) be a formal group law over a ring R. Recall that an endomorphism of f (x, y) is

a morphism h : f (x, y) → f (x, y) of formal group laws. The set of endomorphisms becomes a

group under the operation (h1, h2) 7→ f (h1, h2) (see Lemma A.3.2), and it becomes a (possibly non-

commutative) ring under composition. Endomorphisms of formal group laws are a complicated

matter, but they have been well studied. For instance, the work of Dieudonné and Lubin, among

others, has resulted in the following theorem. See also [9, Thm. A2.2.18] and the reference therein.

Theorem A.4.1. Let f (x, y) be a formal group law of height d over a perfect field k of charac-

teristic p containing Fpd , and assume that [p]f (t) = tp
d

(or, in more modern language, take f (x, y)

to be the Honda formal group law of height d). Then we have an isomorphism of non-commutative

rings

End f (x, y) � W (Fpd )〈x〉/
(
xd − p, xw − Frob(w)x

)
where W (Fpd ) is the ring of Witt vectors, w ranges over the Witt vectors in W (Fpd ), and Frob( · ) is

a fixed lift of the Frobenius endomorphism of Fpd to W (Fpd ). �

Let us consider the special case of d = 1. By Example A.3.4, the multiplicative formal group

law f (x, y) fits within the framework for the above theorem. Viewing f (x, y) as a formal group law

in Fp, the above theorem tells us that the endomorphism ring of the multiplicative formal group

law must be isomorphic to the ring Zp; in particular, the automorphism group is given by the unit

group Z∗p. The main goal in this section is to give an elementary proof of this fact. For convenience,

we state it as a separate result.

Theorem A.4.2. The endomorphism ring of the multiplicative formal group law over the

ring Fp is isomorphic to Zp, hence the automorphism group is the unit group Z∗p. �

Proof: We begin by establishing a map Zp → End f (x, y). The map is described as follows.

Let n be a p-adic integer, and express it as a sum n = a0 + a1p + a2p2 + · · · . Let’s now define the

formal power series

hn(t) B (1 + t)n − 1 .
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If n is an integer, or equivalently if the series a0 + a1p + a2p2 + · · · terminates after finitely many

steps, then this power series is just a polynomial. If not, we should interpret the formal power

series as

hn(t) = (1 + t)a0(1 + t)a1p(1 + t)a2p2
· · · − 1 ,

which can be expanded in the usual way, yielding possibly infinitely many well-defined coefficients.

Let’s take a closer look at these coefficients. As we are working over characteristic p, we may as

well write

hn(t) = (1 + t)a0(1 + tp)a1
(
1 + tp

2)a2 · · · − 1 .

We can now make the following observation. As the ai are strictly less than p, the coefficient

in front of tp
k

is given by ak, and while the coefficient in front of tc, pk < c < pk+1, is a finite

expression in the variables a0, a1, . . . , ak. In particular, we find that any endomorphism coming

from our map is uniquely determined by, and uniquely determines, the coefficients in front of the

tpk , for k = 0,1, . . ..

We first verify that hn(t) defines an endomorphism of the multiplicative formal group law. To

verify this, we should check that

hn(x + y + xy) = hn(x) + hn(y) + hn(x)hn(y) .

In order to prove this identity, we need to check that the coefficients in front of xky` coincide,

for all finite k and `. But by the observation above, for every pair (k, `), the coefficient in front of

xky` depends on only finitely many of the ai . Thus, to prove that the coefficients in front of xky`

coincide, we may as well throw away the other ai , effectively replacing n by an integer. This tells

us that we are done once we have verified the identity when n is an integer. To do this, just write

hn(x + y + xy) = (1 + x + y + xy)n − 1

= (1 + x)n(1 + y)n − 1

=
(
(1 + x)n − 1

)
+

(
(1 + y)n − 1

)
+

(
(1 + x)n − 1

)(
(1 + y)n − 1

)
= hn(x) + hn(y) + hn(x)hn(y)

as was to be shown.

We now verify that the map Zp → End f (x, y) is a homomorphism of rings. Let us write

n = a0 + a1p + a2p2 + · · · , and m = b0 + b1p + b2p2 + · · · . Then we get

f
(
hn(t), hm(t)

)
= hn(t) + hm(t) + hn(t)hm(t)

=
(
(1 + t)n − 1

)
+

(
(1 + t)m − 1

)
+

(
(1 + t)n − 1

)(
(1 + t)m − 1

)
= (1 + t)n(1 + t)m − 1

= (1 + t)a0+b0(1 + t)(a1+b1)p(1 + t)(a2+b2)p2
· · · − 1
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and

hn
(
hm(t)

)
=

(
1 +

(
(1 + t)m − 1

))n
− 1

=
(
(1 + t)b0(1 + t)b1p · · ·

)a0(
(1 + t)b0(1 + t)b1p · · ·

)a1p
· · · − 1

=
(
(1 + t)b0(1 + tp)b1 · · ·

)a0(
(1 + tp)b0(1 + tp

2
)b1 · · ·

)a1
· · · − 1

= (1 + t)a0b0(1 + tp)a0b1+a1b0(1 + tp
2
)a0b2+a1b1+a2b0 · · · − 1

which shows the desired result.

The final step is to verify that any endomorphism is in the image of our map. To this end we

start with an arbitrary endomorphism h(t) = h1t + h2t2 + · · · . Expand the equation

h(x + y + xy) − h(x) − h(y) − h(x)h(y) =
∑
i,j≥0

cijx
iyj . (∗)

All of the cij are polynomial expressions in the hk. In fact, with some elementary combinatorics,

one can verify that

cij =

min(i,j)∑
k=0

( (i + j − k)!
(i − k)!(j − k)!k!

hi+j−k
)
− hihj .

Notice in particular that cij = 0 if either i = 0 or j = 0 — something which is easily seen directly

from the functional equations. Our goal is to consider special cases of (∗) to show that, if we know

the values h1, hp, hp2 , hp3 , and so on, then we can uniquely determine the values of all other hk.

By our previous considerations, we conversely know that any choice of values h1, hp, hp2 , and so

on, actually yields a unique endomorphism.

Consider first the special case of (∗) where j = 1. If i ≥ 1, we find that

ci1 = (i + 1)hi+1 + ihi − hih1 .

Filling in i = 1, we find that h2 is determined by h1; filling in i = 2, h3 ends up being determined

by h1 and h2. This pattern continues until i = p − 1, in which case the characteristic of our field

forces the equation to become trivial, thus yielding no relation between hp and h1, . . . , hp−1. Going

on, we find that hp+1, . . . , h2p−1 are determined by h1, . . . , hp, but when filling in i = 2p−1, we find

no relation between h2p and h1, . . . , h2p−1. This pattern continues, and we find that it suffices to

determine the values of h1, hp, h2p, h3p, and so on.

At this point, we consider the special case of (∗) where j = p, and i = np for some n ≥ 1. We

find the equation

cij =
(np + p − 0)!

(np − 0)!(p − 0)!0!
hnp+p−0 +

(np + p − 1)!
(np − 1)!(p − 1)!1!

hnp+p−1 + · · ·

+

(
np + p − (p − 1)

)
!(

np − (p − 1)
)
!
(
p − (p − 1)

)
!(p − 1)!

hnp−(p−1) +
(np + p − p)!

(np − p)!(p − p)!p!
hnp+p−p − hnphp

=
(np + p)!
(np)!p!

hnp+p +
(np + p − 1)!

(np − 1)!(p − 1)!1!
hnp+p−1 + · · ·

+
(np + 1)!(

np − (p − 1)
)
!1!(p − 1)!

hnp+1 +
(np)!

(np − p)!p!
hnp − hnphp110



Barring the potential vanishing of coefficients for a moment, we notice that, if n = 1, we find a

relation between h2p and hp, thus telling us that h2p is determined by hp; if n = 2, we find that h3p

is determined by h2p, and so on. The only situation in which this reasoning could fail, is when the

coefficient in fron of h(n+1)p in the equation in the case n = p is divisible by p. Let’s take a look at

this coefficient. We write
(np + p)!
(np)!p!

=
(np + 1)(np + 2) · · · (np + p)

p!
.

The denominator is a multiple of p, but not of p2. As for the numerator, the only term divisible

by p is np + p. Thus, the coefficient vanishes modulo p if and only if np + p is a multiple of p2.

That is, when n − 1 is a multiple of p. Thus we now find that h(t) is entirely determined by the

values of h1, hp, hp2 , h2p2 , h3p2 , and so on.

At the next step, the pattern will hopefully become clear. Look at (∗) in the case j = p2 and

i = np2 for some n ≥ 1. We find the equation

cij =
(np2 + p2 − 0)!

(np2 − 0)!(p2 − 0)!0!
hnp2+p2−0 +

(np2 + p2 − 1)!
(np2 − 1)!(p2 − 1)!1!

hnp2+p21 + · · ·

+

(
np2 + p2 − (p2 − 1)

)
!(

np2 + p2 − (p2 − 1)
)
!
(
p2 − (p2 − 1)

)
!(p2 − 1)!

hnp2+p2−(p2−1)

+
(np2 + p2 − p2)!

(np2 − p2)!(p2 − p2)!(p2)!
hnp2+p2−p2 − hnp2hp2

=
(np2 + p2)!
(np2)!(p2)!

hnp2+p2 +
(np2 + p2 − 1)!

(np2 − 1)!(p2 − 1)!1!
hnp2+p2−1 + · · ·

+
(np2 + 1)!

(np2 + 1)!(p2 + 1)!(p2 − 1)!
hnp2+1 +

(np2)!
(np2 − p2)!(p2)!

hnp2 − hnp2hp2

This equation shows that h(n+1)p2 is determined by hnp2 , except in the case where the coefficient

in front of h(n+1)p2 in the equation in the case i = np2 is divisible by p. The coefficient is

(np2 + p2)!
(np2)!(p2)!

=
(np2 + 1)(np2 + 2) · · · (np2 + p2)

(p2)!
.

The denominator is divisible by pp+1, but not by pp+2. On the other hand, the numerator can only

be divisible by pp+2 if np2 + p2 is divisible by p3, which happens only when n = p − 1. Thus we

find that h(t) is uniquely determined by the values h1, hp, hp2 , hp3 , h2p3 , h3p3 , and so on.

This procedure continues indefinitely, with the same general pattern. We consider the case

of (∗) where j = p3, i = np3 for some n ≥ 1, then the case where j = p3, i = np4, and so on. The

conclusion is as desired: our equation is uniquely by a choice of h1, hp, hp2 , hp3 , and so on, and

by the existence of the map Zp → End f (x, y), any such choice yields an endomorphism. �

We will find that it will prove to be useful to also compute the truncated analogue of the

above theorem. In Section 3.1 we’ll define a k-bud to be essentially a formal group law f (x, y),

but defined only modulo (x, y)k+1; likewise, a morphism of k-buds is described by a series h(t)

which is defined modulo (tk+1). For all k ≥ 1, we may interpret the multiplicative formal group

law f (x, y) = x + y + xy as a k-bud, so that we may ask what its endomorphisms are.
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Theorem A.4.3. Let the notation be as above. Write r for blogp(k)c. Then the endomorphism

ring of the multiplicative k-bud over the ring Fp is isomorphic to Z/prZ, hence the automorphism

group is (Z/prZ)∗. �

Proof sketch: On the other hand, every automorphism of f (x, y), when viewed as a for-

mal group law, truncates to an automorphism of k-buds. This allows us to find a map Zp →

End
(
f (x, y)

)
, where the endomorphism ring is the ring of endomorphisms of k-buds. In fact, as k-

buds are determined by finitely many coefficients, and each of the coefficients in the power series

h(t) = (1 + t)n − 1, n ∈ Zp, are determined by finitely many of the coefficients in the decomposition

n = a0 + a1p + a2p2 + · · · , it’s perhaps better to say that we have a map Z(p) → End
(
f (x, y)

)
.

But more is true than that. Looking at the second part of the proof of the previous theorem,

we find that any endomorphism of the formal group law f (x, y) = x + y + xy was determined by

the coefficients h1, hp, hp2 , and so on. This carries over to the case of k-buds, except this time,

we have only finitely many coefficients to deal with, thanks to the truncation. In fact, we have

precisely blogp(k)c of them. As every endomorphism of k-buds is determined by blogp(k)c choices of

coefficients in Fp, and conversely all possible choices are known to actually give an endomorphism,

there are no further possible choices, and the desired result thus follows. �
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